Assessment of thermochemical data on steel deoxidation

Authors

  • P. Gómez Facultad de Química - UNAM, Dpto. de Ing. Quim. Metalúrgica
  • F. Reyes Facultad de Química - UNAM, Dpto. de Ing. Quim. Metalúrgica
  • J. Gutiérrez ESIME-Azcapotzalco
  • G. Plascencia CIITEC - IPN

DOI:

https://doi.org/10.3989/revmetalm.0847

Keywords:

Molten steel, Deoxidation, Deoxidizing agents, Dilute Solutions, Chemical equilibrium

Abstract


It is proposed to develop a method to judge the certainty on the information regarding to deoxidation equilibria of iron melts. To accomplish this objective, thermochemical data was collated and then evaluated. The basic knowledge on deoxidation conditions are framed by the non-ideal Henrian behaviour of diluted solutions of both deoxidizer and oxygen in liquid iron in equilibrium with a pure oxide. Conventional deoxidation reactions were considered at 1,873 K such that in their equilibrium constants, only first order interaction coefficients were considered. The criteria in selecting the most appropriated free energy equation was based on evaluating them under two critical composition points: 1 where they satisfy an oxygen to deoxidizer ratio dictated by its stoichiometry and 2 where oxygen contents at a given amount of deoxidizer reaches a minimum value. These data were plotted on logarithmic scales to appreciate the effects of deoxidizer’s valences. Once such information was classified, under restrictions 1 and 2, previous compositions were related to deoxidizer´s electronegativities.

Downloads

Download data is not yet available.

References

[1] C. Wagner, Thermodynamics of alloys, Ed. Addison-Wesley, New York, U.S.A., 1952, pp. 10-25.

[2] J. Sung-Koo, K. Seon-Hyo, and S. Bo, Metall. Mater. Trans. 33B (2002) 703-709.

[3] Ghosh A., Secondary Steelmaking, principles and applications, Ed. CRC Press, New York, U.S.A., 2001, pp. 105-146.

[4] K. Suzuki, S. Ban-Ya, and M. Hino, ISIJ Int. 41 (2001) 813-817. doi:10.2355/isijinternational.41.813

[5] M. Zhongting, Metall. Mater. Trans. 32B (2001) 87-103.

[6] A. Karasev and H. Suito, Metall. Mater. Trans. 30B (1999) 249-257.

[7] H. Itoh, M. Hino and S. Ban-Ya, Metall. Mater. Trans. 28B (1997) 953-956.

[8] H. Ohta and H. Suito, Metall. Mater. Trans. 27B (1996) 943-953.

[9] S. Dimitrov, A. Weyl and D. Janke, Steel Res. Intl. 66 (1995) 3-7.

[10] E.T. Turkdogan, Physical chemistry of high temperature technology, Ed. Academic Press, New York, U.S.A., 1980, pp. 150-226.

[11] D. Janke and W.A. Fischer, Archiv. Fu.r das Eisenhu.ttenwesen 47 (1976) 195-198.

[12] K. Taguchi, H. Ono-Nakazato, D. Nakai, T. Usui and K. Marukawa, ISIJ Int. 43 (2003) 1705-1709. doi:10.2355/isijinternational.43.1705

[13] R. Inoue and H. Suito, Steel Res. Intl. 65 (1994) 403-409.

[14] Japan Society for Promotion of Science, Steelmaking data sourcebook, Ed. Gordon & Breach Science Publishers, New York, U.S.A., 1988, pp. 1-271.

[15] Q. Han, X. Zhang, D. Chen and P. Wang, Met. Trans. B 19 (1988) 617-622. doi:10.1007/BF02659153

[16] Q. Han, X. Feng, S. Liu, H. Niu and Z. Tang, Met. Trans. B 21 (1990) 295-302. doi:10.1007/BF02664197

[17] C.H.P. Lupis, Chemical Thermodynamics of Materials, Ed. North Holland, New York, U.S.A., 1983, pp. 235-262.

[18] E.T. Turkdogan, Archiv. Fu.r das Eisenhüttenwesen 54 (1983) 1-10.

[19] D. Janke and W.A. Fischer, Archiv. Für das Eisenhütenwesen 49 (1978) 425-430.

[20] A. Vahed and D.A.R. Kay, Met. Trans. B 7 (1976) 375-383. doi:10.1007/BF02652708

[21] W.G. Wilson, D.A.R. Kay and A. Vahed, JOM 26 (1974) 14-23.

[22] G. Kinne, A.F. Vishkarev and V.I. Yavoiski, Vyssh. Uchebn. Zaved, Chem. Metall. (1963) 65.

[23] M. Tanahashi, N. Furuta, T. Taniguchi, C. Yamauchi and T. Fujisawa, ISIJ Int. 43 (2003) 7-13. doi:10.2355/isijinternational.43.7

[24] S. Dimitrov, H. Wenz, K. Koch and D. Janke, Steel Res., 66 (1995) 39-44.

[25] J. Geldenhuis and R. Dippenaar, Met Trans B, (1991) 915-918.

[26] M. Heinz, K. Koch and D. Janke, Steel Res. 60 (1989) 246-254

[27] C.K. Kim and A. McLean, Met. Trans. B, 10 (1979) 585-594. doi:10.1007/BF02662561

[28] G.K. Sigworth and J.F. Elliot, Met. Sci. J. 8 (1974) 298-310.

[29] H. Ohta and H. Suito, Met. Trans. B 28 (1997) 1131-1139. doi:10.1007/s11663-997-0069-4

[30] R. Inoue and H Suito, Met. Trans. B 25 (1994) 235-244. doi:10.1007/BF02665206

[31] V.Y. Dashevskii, A.M. Katsnelson, N.N. Makarova, K.V. Grigorovitch and V.I. Kashin, ISIJ Intl. 43 (2003) 1487-1494. doi:10.2355/isijinternational.43.1487

[32] S.B. Lee, S.M. Jung, H.G. Lee and C.H. Rhee, Metall. Mater. Trans. B 33 (2002) 930-932. doi:10.1007/s11663-002-0078-2

[33] S. Dimitrov, A. Weyl and D. Janke, Steel Res. 66 (1995) 87-92.

[34] F. Oeters, Metallurgie der Stahlherstellung, Ed. Springer-Verlag, Germany, 1989, pp. 51-117.

[35] C. Bodsworth and H.B. Bell, Physical chemistry of iron and steel manufacture, Ed. Longman, London, U.K., 1972, pp. 169-300

[36] Japan Society for Promotion of Science, Steelmaking data sourcebook, Ed. Gordon & Breach Science Publishers, New York, U.S.A., 1988, pp. 273-312.

Downloads

Published

2009-08-30

How to Cite

Gómez, P., Reyes, F., Gutiérrez, J., & Plascencia, G. (2009). Assessment of thermochemical data on steel deoxidation. Revista De Metalurgia, 45(4), 305–316. https://doi.org/10.3989/revmetalm.0847

Issue

Section

Technical Notes