Removal of adsorbent particles of copper ions by Jet flotation

Authors

  • M. Santander Universidad de Atacama -Departamento de Metalurgia, Centro Regional de Investigación y Desarrollo Sustentable de Atacama
  • P. Tapia Universidad de Atacama -Departamento de Metalurgia, Centro Regional de Investigación y Desarrollo Sustentable de Atacama
  • O. Pávez Universidad de Atacama -Departamento de Metalurgia, Centro Regional de Investigación y Desarrollo Sustentable de Atacama
  • L. Valderrama Universidad de Atacama -Departamento de Metalurgia, Centro Regional de Investigación y Desarrollo Sustentable de Atacama
  • D. Guzmán Universidad de Atacama -Departamento de Metalurgia, Centro Regional de Investigación y Desarrollo Sustentable de Atacama

DOI:

https://doi.org/10.3989/revmetalm.0845

Keywords:

Jet flotation, Adsorption, Elimination of Cu 2

Abstract


The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbent containing the absorbed copper ions. The results indicate that at pH > 7 and at adsorbent particles concentration of 2 kg.m–3, 99 % of copper ions is adsorbed and, when the air/ effluent flow ratio applied in the Jet cell is 0.2, 98 % of adsorbent particles containing the adsorbed copper ions is removed.

Downloads

Download data is not yet available.

References

[1] J. Rubio y F. Tessele, Miner. Eng. 10 (1997) 671- 679. doi:10.1016/S0892-6875(97)00047-2

[2] I. Lin y I. Spevakova, Prog. Miner. Process. Technol. 58 (1994) 431-450.

[3] S. Kesraoui-Ouki, C. Cheeseman y R. Perry, J. Chem. Technol. Biotechnol. 59 (1994) 121-126. doi:10.1002/jctb.280590202

[4] M. Zamzow y E. Murphy, Sep. Sci. Technol. 27 (1984) 1969-1984. doi:10.1080/01496399208019459

[5] G. Pramod, P. Albino, S. Chakrabory y M. Ray, Sep. Purif. Technol. 57 (2007) 47-56. doi:10.1016/j.seppur.2007.03.003

[6] L. Feris, A. De Leon, M. Santander y J. Rubio, Int. J. Miner. Process. 74 (2004) 101-106. doi:10.1016/j.minpro.2003.09.005

[7] C. Costa, Disertación Magister, Escola de En - genharia, Programa Pós-Graduaçao em Enge - haria Metalúrgica e dos Materiais, Universidad Federal do Rio Grande do Sul, 1998.

[8] K. Keydros, K. Matis y G. Stalidis, J. Coll. Int. Sci. 155 (1993) 409-414. doi:10.1006/jcis.1993.1054

[9] A. Zouboulis, Miner. Eng. 8 (1995) 1.477-1.488.

[10] A. Zouboulis, K. Kydros y K. Matis, Sep. Sci. Technol. 27 (1992) 2.143-2.155.

[11] L. Férís, M. Souza, J. Rubio, VI Southern Hemis phe re Meeting on Mineral Technology, Rio de Janeiro, Brasil, 2001, pp.436-442.

[12] A. Zouboulis, K.Matis, N. Lazaridis y P. Go ly - shin, Miner. Eng. 16 (2003) 1.231-1.236.

[13] J. Solari, Engenharia Saitaria 20 (1981) 332-335.

[14] J. Rubio, M. Souza y R. Smith, Miner. Eng. 15 (2002) 139-155. doi:10.1016/S0892-6875(01)00216-3

[15] J. Finch, Miner. Eng. 8 (1995) 587-602. doi:10.1016/0892-6875(95)00023-J

[16] Y. Yan y G. Jameson, Int. J. Miner. Process 73 (2004) 23-28. doi:10.1016/j.minpro.2003.07.002

[17] D. Readett y B. Clayton, Flotation Plants: Are They Optimized? Society for Mining, Metallurgy and Exploration, Littleton, Malhotra, D. (Ed.), 1995, pp. 165-170.

[18] K. Tikhomolova y I. Urakova, Coll. J. USSR 75 (2002) 894-899.

[19] J. Bouzid, Z. Elouear, M. Ksibi, M. Feki, y A. Montiel, J. Hazard Mater. 152 (2008) 838-845. doi:10.1016/j.jhazmat.2007.07.092

[20] I. Alinnor, Fuel 86 (2007) 853-858. doi:10.1016/j.fuel.2006.08.019

[21] A. Papandreou, C. Stournaras, D. Panias, J. Hazard Mater. 148 (2007) 538-547. doi:10.1016/j.jhazmat.2007.03.020

[22] H. Cho, D. Oh, K. Kim, J. Hazard Mater. B127 (2005) 187-195. doi:10.1016/j.jhazmat.2005.07.019

[23] C. Peacock y D. Sherman, Geochim. Cosmo chim. Acta. 68 (2004) 2623-2637. doi:10.1016/j.gca.2003.11.030

[24] L. Bochatay, P. Persson, L. Lovgren y G.Brown, J. Phys. IV 7 (1997) 819-820. doi:10.1051/jp4:1997246

[25] C. Weng, C. Tsai, S. Chu y Y. Sharma, Sep. Purif. Technol. 54 (2007) 187-197. doi:10.1016/j.seppur.2006.09.009

[26] P. Schindler, B. Furst, R. Dick and P. Wolf, J. Coll. Int. Sci. 55 (1976) 469-475. doi:10.1016/0021-9797(76)90057-6

[27] K. Panday, G. Prasad y V. Singh, Water Res. 19 (1985) 869-873 doi:10.1016/0043-1354(85)90145-9

[28] D. Fornasiero y J. Ralston, Int. J. Miner. Process. 76 (2005) 75-81. doi:10.1016/j.minpro.2004.12.002

[29] I. Larson y R. Pugh, J. Coll. Int. Sci. 208 (1998) 399-404. doi:10.1006/jcis.1998.5800

[30] R. Shawabkeh, A. Al-Harahsheh y A. Al- Otoom, Sep. Purif. Technol. 40 (2004) 251-257. doi:10.1016/j.seppur.2004.03.006

[31] N. Vlasova, Colloids Surf. A: Physicchem. Eng. Aspects 163 (2000) 125-133. doi:10.1016/S0927-7757(99)00299-X

[32] J. Cowburn a, G. Harbort, E. Manlapig, Z. Pokrajcic, Miner. Eng. 19 (2006) 609-618.

[33] A. Tasdemir, T. Tasdemir, B. Oteyaka, Miner. Eng. 20 (2007) 1.331-1.336.

[34] H. Soto, G. Barbery, Miner. Metall. Proc. 8 (1991) 16-21.

[35] B. Oteyaka, H. Soto, Miner. Eng. 8 (1995) 91-100. doi:10.1016/0892-6875(94)00105-L

[36] J. Jameson, E. Manlapig, Proc. Int. Conf. Column Flotation, Sudbury, Ontario, 1991, pp. 673-687.

[37] T. Tasdemir, B. Oteyaka y A. Tasdemir, Miner. Eng. 20 (2007) 761-765. doi:10.1016/j.mineng.2007.02.008

[38] M. Marchese, A. Uribe y J. Finch, Chem. Eng. Sci. 47 (1992) 3.475-3.482.

[39] K. Yamagiwa, D. Kusabiraki y A Ohkawa, J. Chem. Eng. Jpn. 23 (1990) 343-348. doi:10.1252/jcej.23.343

Downloads

Published

2009-10-30

How to Cite

Santander, M., Tapia, P., Pávez, O., Valderrama, L., & Guzmán, D. (2009). Removal of adsorbent particles of copper ions by Jet flotation. Revista De Metalurgia, 45(5), 365–374. https://doi.org/10.3989/revmetalm.0845

Issue

Section

Articles