Analysis of fluid flow in a stirred reverberatory furnace with different impellers, by physical and numerical modeling

Authors

  • R. Juárez Centro de Investigación y Estudios Avanzados del IPN
  • A. Flores Centro de Investigación y Estudios Avanzados del IPN
  • E. Macias Universidad Autónoma de San Luis de Potosí,
  • N. Reyes Centro de Investigación y Estudios Avanzados del IPN

DOI:

https://doi.org/10.3989/revmetalm.0906

Keywords:

Aluminum refining, Turbulent multiphase flow, Mathematical modeling, Physical modeling

Abstract


A fluid flow analysis and particle trajectory in a 5 t molten capacity scaled 1:2 model of a reverberatory furnace was performed using both physical and numerical simulation. The design of the system allowed studying the behavior of the liquid in a system agitated by impellers. The parameters studied were, rotating speed, shape and height of the impeller. The physical and numerical simulations were used to determine circulation and mixing times, fluid flow patterns and velocity profiles in the agitation and melting chambers. Using experimental data, it was possible to establish the interaction between turbulent flow and circulating solid particles. The original design of the reverberatory furnace was modified based on the physical and numerical simulation analysis. The new design showed an increased magnesium removal rate by means of a more efficient and faster mixing.

Downloads

Download data is not yet available.

References

[1] C. Martínez, Tesis de Maestría, CINVESTAV, 1998.

[2] S. L. Yeoh, G Papadakis y M. Yianneskis, Chem. Eng. Sci. 60 (2005) 2.293-2.302.

[3] C. Galleti, A.P. Aglianti y M. Yianneskis, Chem. Eng. Sci. 60 (2005) 2.317-2.331.

[4] L Nikiforaki, G Montante, K.C. Lee, M. Yian - neskis, Chem. Eng. Sci. 58 (2003) 2.937-2.949.

[5] Y. Murakami, T. Hirose, T. Yamato, H. Fujiwara y M. Ohshima, J. Chem. Eng. Jpn. 13 (1980) 318-323. doi:10.1252/jcej.13.318

[6] T. Nomura, T. Uchida y K. Takahashi, J. Chem. Eng. Jpn. 30 (1997) 875-879. doi:10.1252/jcej.30.875

[7] W.G. Yao, H. Soto, K Takahashi y K. Koyama, Chem. Eng. Sci. 52 (1997) 807-814. doi:10.1016/S0009-2509(96)00381-8

[8] A.A. Barresi. Chem. Eng. Sci. 53 (1998), pp. 3.031-3.040.

[9] A. Flores, C. Martinez, J.C. Escobedo, J.A. Toscano y A. Puente, Light Metals. (1999) 711-718.

[10] J.C. Escobedo, J.F. Hernandez, S. Escobedo, A. Flores y D.A. Cortes, Rev. Met. Madrid 39 (2003) 172-182.

[11] F. Barajas, Tesis de Maestría en Ing. Metalúrgica, Centro de Investigación y Estudios Avanzados del IPN, 2004.

[12] D.J. Lamberto, M.M. Alvarez y F.J. Muzzio, Chem. Eng. Sci. 54 (1999) 919-942. doi:10.1016/S0009-2509(98)00275-9

[13] B.E. Launder y D.B. Spalding, Comput. Method.Appl. Mech.Eng. 3 (1974) 269-289. doi:10.1016/0045-7825(74)90029-2

[14] R. I. Guthrie, Engineering in Process Metallurgy, Oxford University Press, EE.UU., 1992, pp. 174-175, 178.

[15] N.B. Reyes, Tesis Maestría en Ing. Metalúrgica, Centro de Investigación y Estudios Avanzados del IPN, Ramos Arizpe Coah. 2006.

[16] D. Mazundar, Tesis Doctoral, McGill Univ., Montreal, Canadá, 1985.

[17] Patent US2005/0035503 A1.

[18] Patent US2008/0023891 A1.

Downloads

Published

2009-10-30

How to Cite

Juárez, R., Flores, A., Macias, E., & Reyes, N. (2009). Analysis of fluid flow in a stirred reverberatory furnace with different impellers, by physical and numerical modeling. Revista De Metalurgia, 45(5), 384–396. https://doi.org/10.3989/revmetalm.0906

Issue

Section

Articles