Mathematical modeling of mixing phenomena in ladles of aluminum equipped with impeller and gas purging for degassing

Authors

  • M. A. Ramírez-Argáez Departamento de Ingeniería Metalúrgica de la Facultad de Química de la UNAM
  • F. Contreras Estudiante de Posgrado en Metalurgia, Centro de Graduados, Instituto Tecnológico de Morelia
  • C. González Departamento de Ingeniería Metalúrgica de la Facultad de Química de la UNAM

DOI:

https://doi.org/10.3989/revmetalm.2006.v42.i3.18

Keywords:

Mathematical modeling, Two phase flows, Vortex, Free surface, Mixing

Abstract


In this work a fundamental Eulerian mathematical model was developed to study fluid flow and mixing phenomena in aluminum ladles equipped with impeller for deshidrogenization treatment. The effect of critical process parameters such as rotor speed, depth of immersion, gas flow rate, and type of rotor on the mixing behavior and vortex formation was analyzed with this model. The model simulates operation with and without gas injection and it was developed on the commercial CFD code PHOENICS 3.4 in order to solve all conservation equations governing the process, i.e. continuity, 3D turbulent Navier-Stokes and the k-e turbulence model for a two-phase fluid flow problem using the Inter Phase Slip Algorithm (IPSA). In order to realistically represent the process, shape of the furnace and three kinds of impellers were drawn by employing Body Fitted Coordinates (BFC). From the results it was concluded that mixing behavior is highly dependent on the rotor speed and on the rotor type. Mixing time is improved when: 1) Impeller is located at a depth of 0.229m into the aluminum bath, 2) By using high rotor speeds, 3) By using ladles with a high aspect ratio of Diameter to Height, and 4)By using an impeller with notches.

Downloads

Download data is not yet available.

References

[1] O. M. Suárez, Rev. Metal Madrid 40 (2004) 173-181.

[2] A. Molsalve Y R. Morales, Rev. Metal. Madrid 40 (2004) 431-435.

[3] G. K. Sigworth Y T.A Engh, Metall. Trans. B, 13 September (1982) 442-460.

[4] J. G. Stevens Y H. Yu, Light Metals 1992 Proc. 121st TMS Annual Meeting, San Diego, CA, (USA), 1991, Publ. by Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, USA, pp. 1.023-1.029.

[5] J. F. Grandfield, D.W. Irwin, S. Brumale Y C. J. Simansen, Light Metals 1990 Proc. 119th TMS Annual Meeting, Anaheim, CA, (USA), 1990, Publ. by Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, USA, pp. 737- 746.

[6] M. Nilmani, P.K. Thay Y C.J. Simensen, Light Metals 1992 Proc. of the 121st TMS Annual Meeting, San Diego, CA, (USA), 1991, Publ. by Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, USA, pp. 939-945.

[7] F. Boeuf, M. Rey, Y E. Wuilloud, Light Metals 1993 Proc. of the 122nd Annual Meeting, Denver, CO, USA, 1993, Publ by Minerals, Metals & Materials Soc (TMS), Warrendale, PA, USA, pp. 927-932.

[8] M. Nilmani, P.K. Thay, C. J. Simansen, Y D.W. Irwin; Light Metals 1990 Proc. of the 119th TMS Annual Meeting, Anaheim, CA, (USA), 1990, Publ. by Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, USA, pp. 747- 754.

[9] C. Leroy Y G. Pignault; JOM-J Min. Met. Mat. S. 43 (1991) 27-30.

[10] Y. Ohno, D. T. Hampton Y A. W. Moores; Light Metals 1993 Proc. of the 122nd Annual Meeting, Denver, CO, (USA), 1993, Publ. by Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, USA, pp. 915-921.

[11] M. Maniruzzman Y M. Makhlouf; Light Metals Proc. of the 1997 127th TMS Annual Meeting, San Antonio, TX, (USA), 1998, Minerals, Metals & Materials Soc (TMS), Warrendale, PA, USA, pp. 797-803.

[12] M. Maniruzzaman Y M. Makhlouf; Metall. Trans. B 33 (2002) 297-303. doi:10.1007/s11663-002-0013-6

[13] Dongs, S.T. Johansen Y T.A. Engh; Chem. Eng. Sci. 49 (1994) 3.511-3.518.

[14] G.L. Lane, M.P. Schwarz Y G.M. Evans; Appl. Math. Model. (2002) 223-235. doi:10.1016/S0307-904X(01)00057-9

[15] J. Mietz Y F. Oeters: Steel Res. 59 (1988) 52-56.

[16] Phoenics On-Line Information System (POLIS); PHOENICS 3.4. CHAM Company. 2000.

[17] J. Szekely, Fenómenos de Flujo de Fluidos en Procesamiento de Metales, Ed. Limusa, México, D.F., México, 1988.

[18] B. E. Launder Y D. B. Spalding: Comput. Method. Appl. M. (1974) 269-289.

[19] F. Contreras-Bustos, Tesis de Maestría, Centro de Graduados en Materiales, Instituto Tecnológico de Morelia, 2005.

[20] J. E. Gruzleski Y B. Closset, Treatment of Liquid Aluminum-Silicon Alloys, American Foundry Society; USA, pp. 143-181, 1990.

Downloads

Published

2006-06-30

How to Cite

Ramírez-Argáez, M. A., Contreras, F., & González, C. (2006). Mathematical modeling of mixing phenomena in ladles of aluminum equipped with impeller and gas purging for degassing. Revista De Metalurgia, 42(3), 185–202. https://doi.org/10.3989/revmetalm.2006.v42.i3.18

Issue

Section

Articles