Structural study of Cu-Cr mechanical alloying powders

Authors

  • C. Aguilar Departamento de Ingeniería Metalúrgica- Facultad de Ingeniería, Universidad de Santiago de Chile
  • J. Marín Comisión Chilena de Energía Nuclear, CCHEN
  • S. Ordóñez Departamento de Ingeniería Metalúrgica- Facultad de Ingeniería, Universidad de Santiago de Chile
  • D. Celentano Departamento de Ingeniería Mecánica- Facultad de Ingeniería, Universidad de Santiago de Chile
  • F. Castro Centro de Estudios e Investigaciones Técnicas de Guipúzcoa, CEIT
  • V. Martínez Departamento de Ingeniería Metalúrgica- Facultad de Ingeniería, Universidad de Santiago de Chile

DOI:

https://doi.org/10.3989/revmetalm.2006.v42.i5.31

Keywords:

Mechanical alloying, Cu-Cr, Grain size, XRD, Stacking faults

Abstract


The changes of grain size, microstrain, stacking fault probability, stacking fault energy and dislocations density on powder mixtures of copper with 1 and 3 weight % after high energy mechanical milling. The X-ray diffraction profile was analysed by Williamson-Hall (W-H) method. Grain size decreased with the increase of milling time, until values of 106 and 59 nm for 1 and 3 weight % Cr, respectively. As well microstrain increased with milling time. Stacking fault probability increased in function of milling time to value between 1x10–3–8x10–3 for Cu–1 weight % Cr and 3x10–3–8x10–3 for Cu–3 weight % Cr. The stacking fault energy decreased with milling time and amount of chromium. Finally, the dislocations density is between a range between 1x1014–1x1015 m/m3.

Downloads

Download data is not yet available.

References

[1] T.T. Tsong, Mat. Sci. Eng. A 286 (2000) 87-90. doi:10.1016/S0921-5093(00)00683-3

[2] D.G. Morris, M.A. Morris, Benghalem Y C. Biselll, Proc. 2nd Int. Conf. Structural Applications of Mechanical Alloying, editado por F.H. Froes, American Society Metals, (1994) pp. 353-360.

[3] T.R. Anantharaman Y C. Suryanarayana, J. Mater. Sci. 6 (1971) 11-35.

[4] C. Suryanarayana, Non-equilibrium processing of materials, Pergamon Press, Primera Edición, Oxford, U.K., 1999, p. 10.

[5] C. Aguilar., S. Ordóñez, J. Marin, F. Castro Y V. Martínez, Artículo en revisión.

[6] E. Ma. Prog. Mater. Sci. 50 (2005) 413-509. doi:10.1016/j.pmatsci.2004.07.001

[7] J. García-Barriocanal, G. Garcés, P. Pérez Y P. Adeva, Rev. Metal. Madrid 41 (2005) 281-290.

[8] G.K. Williamson Y W.H. Hall, Acta Metall. 1 (1953) 22-31. doi:10.1016/0001-6160(53)90006-6

[9] R.L. Snyder, J. Fiala Y H.J. Bunge, Defect and Microstucture Analysis by Diffraction. IUCr, Oxford University Press Inc., Primera Edición, New York, USA, 1999. pp. 114-115.

[10] B.E.Warren, X-Ray Diffraction. Dover Publications, Inc., New York, USA, 1990, pp. 289-290.

[11] R.W. Chan Y P. Haasen, Physical Metallurgy. North-Holland. Cuarta Edición. Holanda, 1996, p. 1.710

[12] P.J. Ferreira Y P. Müllner, Acta Mater. 46 (1998) 4.479-4.484.

[13] R. Adler, H. Otte Y C. Wagner, Met Trans.1 (1970) 2.375-2.382.

[14] T. Ungár, S. Ott, P. G. Sanders, A. Borbély Y J.R. Weertman, Acta Mater. 46 (1998) 3.693-3.699.

[15] R.W. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials. Jhon Wiley & Sons. Tercera Edición, EE.UU., 1989, pp. 15-17.

[16] C. Suryanarayana, Mechanical Alloying and Mill, Marcell Dekker. Primera Edición. USA, 2004, pp. 59-173.

[17] R.Z. Valiev, R. K. Islamgaliev E I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103-189. doi:10.1016/S0079-6425(99)00007-9

[18] I. Lucks, P. Lamaparter, E. J. Mittemeijer, Acta Mater. 49. (2001) 2.419-2.428.

[19] L. YU. Pustov, S. D. Kaloshkin, V. V. Tcherdyntsev, I. A. Tomilin, E. V. Shelekhov, I. A. Salimon. Mater. Sci. For. 360-362. (2001) 373-378.

[20] H. Huang, MP. Dallimore, J. Pan, P.G. Mccormik, Mater. Sci. Eng. A. 241 (1998) 38-47. doi:10.1016/S0921-5093(97)00470-X

[21] C. N. J. Wagner Y J. C. Hélion, J. Appl. Phys. 36 (1965) 2.830-2.837.

[22] K. Kapoor, D. Lahiri, I. S. Batra, S. V. R. Rao Y T. Sanyal, Mater. Charact. 54 (2005) 131-140. doi:10.1016/j.matchar.2004.09.009

[23] P.C. J. Gallagher, Metall. Trans. 1 (1970) 2.429- 2.461.

[24] A. M. Cuitiño, Mat. Sci. Eng. A 216 (1996) 194- 116.

[25] R. P. Reed Y R. E. Schramm. J. Appl. Phys. 45 (1974) 4.705-4.711

[26] B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Second Edition. USA 1978, pp. 363-368.

[27] T. Ungar, S. Ott, P. G. Sanders, A. Borbély Y J. R. Weertman, Acta Mater. 46 (1998) 3.693-3.699.

[28] J. Eckert, L. Schultz, E. Hellstern Y K. Urban, J. Appl. Phys. 64 (1988) 3.224-3.228.

[29] J. Weertman Y J. Weertman, Elementary Dislocation Theory, McMillan Series in Materials Science, First edition, USA, 1966, pp. 49-50.

Downloads

Published

2006-10-30

How to Cite

Aguilar, C., Marín, J., Ordóñez, S., Celentano, D., Castro, F., & Martínez, V. (2006). Structural study of Cu-Cr mechanical alloying powders. Revista De Metalurgia, 42(5), 334–344. https://doi.org/10.3989/revmetalm.2006.v42.i5.31

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>