Artificial neural networks for prediction of quality in resistance spot welding

Authors

  • O. Martín Área de Ciencia de los Materiales e Ingeniería Metalúrgica. Universidad de Valladolid.
  • M. López Área de Ciencia de los Materiales e Ingeniería Metalúrgica. Universidad de Valladolid.
  • F. Martín Área de Ciencia de los Materiales e Ingeniería Metalúrgica. Universidad de Valladolid.

DOI:

https://doi.org/10.3989/revmetalm.2006.v42.i5.32

Keywords:

Resistance spot welding, Metallurgical quality, Artificial neural networks

Abstract


An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality is determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation).

Downloads

Download data is not yet available.

References

[1] M. Jou, J. Mater. Process. Technol. 132 (2003) 102-113. doi:10.1016/S0924-0136(02)00409-0

[2] S. Agashe y H. Zhang, Weld. J. 82 (2003) 179s- 183s.

[3] E. Bayraktar, D. Kaplan y M. Grumbach, J. Mater. Process. Technol. 153-154 (2004) 80-86. doi:10.1016/j.jmatprotec.2004.04.020

[4] O. Martín, Tesis Doctoral, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, 2004.

[5] N.S. Reddy, A.K. Prasada-Rao, M. Chakraborty y B.S. Murty, Mater. Sci. Eng. A 391 (2005) 131-140. doi:10.1016/j.msea.2004.08.042

[6] A. Jiahe, X. Jiang, G. Huiju, H. Yaohe Y X. Xishan, Mater. Sci. Eng. A 344 (2003) 318-322. doi:10.1016/S0921-5093(02)00444-6

[7] J.M. Vitek, Y.S. Iskander y E.M. Oblow, Weld. J. 79 (2000) 33s-40s.

[8] J.M. Vitek, Y.S. Iskander y E.M. Oblow, Weld. J. 79 (2000) 41s-50s.

[9] J.M. Vitek, S.A. David y C.R. Hinman, Weld. J. 82 (2003) 10s-17s.

[10] J.M. Vitek, S.A. David y C.R. Hinman, Weld. J. 82 (2003) 43s-50s.

[11] Y. Cho y S. Rhee, Weld. J. 81 (2002) 104s-111s.

[12] M.J. Kang, Y. Kim, S. Ahn y S. Rhee, Weld. J. 82 (2003) 238s-247s.

[13] R. Valentini, V. Colla y M. Vannucci, Rev. Metal. Madrid 40 (2004) 416-419.

[14] S. Cho, Y. Cho y S. Yoon, IEEE Trans. Neural Netw. 8 (1997) 874-882. doi:10.1109/72.595885 PMid:18255691

[15] C. Cantera, J. Jiménez, I. Varela y A. Formoso, Rev. Metal. Madrid 38 (2002) 243-248.

[16] J. Mcbride, S. Malinov y W. Sha, Mater. Sci. Eng. A 384 (2004) 129-137. doi:10.1016/j.msea.2004.05.072

[17] UNE-EN 10002-1:2002.

[18] ASTM, Norma E 112-88.

[19] G. Barrera, M.A. Fabián, M. Vélez Y L. Villaseñor, Rev. Metal. Madrid 37 (2001) 403-411.

[20] G. Barrera, M.A. Fabián, y C.A. Ugalde, Rev. Metal. Madrid 38 (2002) 163-172.

[21] P.T. Houldcroft, Tecnología de los Procesos de Soldadura, CEAC, Barcelona, España, 1990, pp. 166-191.

[22] F. Abad y J.M. Bisbe, Manual de Soldadura por Resistencia, Consejería de Industria, Comercio y Turismo de la Junta de Castilla y León, España, 2002, pp. 11-18 (capítulo I).

[23] R.B. Mccauley, M.P. Bennett, W.D. Bodary, G.C. Farrington, R.J. Gasser, W.W. Hurd, A.W. Schueler, T.W. Shearer, J.B. Silverberg, Resistance Spot Welding, T. Lyman (Ed.), Metals Handbook Eighth Edition Volume 6 Welding and Brazing, American Society for Metals, Metals Park, Ohio, E.U.A., 1971, pp. 401-424.

[24] J. Villafuerte, Weld. J. 82, 11 (2003) 50-52.

[25] J.M. Ruiz-Prieto y A. Vitores, Metales y Aleaciones No Férreas, Fundación Gómez-Pardo Servicio de Publicaciones, Madrid, España, 1976, pp. 51-54.

[26] J.M. Ruiz-Prieto y A. Vitores, Metales y Aleaciones No Férreas, Fundación Gómez-Pardo Servicio de Publicaciones, Madrid, España, 1976, pp. 175-193.

[27] O. Martín y S. Alonso, Mantenimiento 169 (2003) 38-43.

[28] G. Joseph, Copper: Its Trade, Manufacture, Use and Environmental Status, K.J.A. Kundig (Ed.), ASM International, Materials Park, OH, E.U.A., 1999, pp. 277-280.

[29] J.C. Harkness y A. Guha, Beryllium-Copper and Beryllium-Nickel Alloys, K. Mills, J.R. Davis, J.D. Destefani, D.A. Dieterich, G.M. Crankovic y H.J. Frissell (Eds.), Metals Handbook Ninth Edition Volume 9 Metallography and Microstructures, American Society for Metals, Metals Park, Ohio, E.U.A., 1985, pp. 392-398.

[30] B. Martín Del Brío y A. Sanz-Molina, Redes Neuronales y Sistemas Borrosos, RA-MA, Madrid, España, 1997, pp. 26-28.

[31] J. Krautkrämer y H. Krautkrämer, Ultrasonic Testing of Materials, Springer-Verlag, Fourth Edition, Berlin, Alemania, 1990, pp. 462 y 463.

[32] T. Mansour, Ultrasonic testing of spot welds in thin gage steel, P. McIntire (Ed.), Nondestructive Testing Handbook Second Edition Volume 7 Ultrasonic Testing, American Society for Nondestructive Testing, E.U.A., 1991, pp. 557-568.

[33] UNE-EN ISO 14272:2002.

[34] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Second Edition, Upper Saddle River, NJ, E.U.A., 1999, pp. 205-218.

[35] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, E.U.A., 1995, pp. 343-345.

[36] S. Guessasma y C. Coddet, Acta Mater. 52 (2004) 5157-5164. doi:10.1016/j.actamat.2004.07.022

[37] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, E.U.A., 1995, pp. 9-15.

[38] M.T. Hagan y M.B. Menhaj, IEEE Trans. Neural Netw. 5 (1994) 989-993. doi:10.1109/72.329697 PMid:18267874

[39] K.K. Tho, S. Swaddiwudhipong, Z.S. LIU y J. HUA, Model. Simul. Mater. Sci. Eng. 12 (2004) 1055-1062. doi:10.1088/0965-0393/12/5/019

[40] N. Selvakumar, P. Radha, R. Narayanasamy y M.J. Davidson, Model. Simul. Mater. Sci. Eng. 12 (2004) 611-620. doi:10.1088/0965-0393/12/4/004

[41] J. Zueco y F. Alhama, Rev. Metal. Madrid 41 (2005) 227-232.

[42] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, E.U.A., 1995, pp. 290-292.

[43] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Second Edition, Belmont, MA, E.U.A., 1999, pp. 107.

[44] I.E. Dror, M. Zagaeski y C.F. Moss, Neural Netw. 8 (1995) 149-160. doi:10.1016/0893-6080(94)00057-S

Downloads

Published

2006-10-30

How to Cite

Martín, O., López, M., & Martín, F. (2006). Artificial neural networks for prediction of quality in resistance spot welding. Revista De Metalurgia, 42(5), 345–353. https://doi.org/10.3989/revmetalm.2006.v42.i5.32

Issue

Section

Articles