High temperature corrosion of metallic interconnects in solid oxide fuel cells

Authors

  • D. M. Bastidas CENIM-National Centre for Metallurgical Research, CSIC

DOI:

https://doi.org/10.3989/revmetalm.2006.v42.i6.41

Keywords:

Solid oxide fuel cell (SOFC), Metallic interconnect and coating, High temperature corrosion, Impedance

Abstract


Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

Downloads

Download data is not yet available.

References

[1] L.J.M.J. Blomen and M.N. Mugerwa (Eds.), Fuel Cell Systems, Springer, New York, U.S.A., 1994, p. 163.

[2] B.C.H. Steele and A. Heinzel, Nature 414 (2001) 345-352. doi:10.1038/35104620

[3] T. Komatsu, H. Arai, R. Chiba, K. Nozawa, M. Arakawa and K. Sato, Electrochem. Solid-State Lett. 9 (2006) A9-A12. doi:10.1149/1.2130309

[4] Z.P. Shao and S.M. Haile, Nature 431 (2004) 170- 173. doi:10.1038/nature02863

[5] D.M. Bastidas, S. Tao and J.T.S. Irvine, J. Mater. Chem. 16 (2006) 1603-1605. doi:10.1039/b600532b

[6] J.C. Ruíz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-López, W. Zhou and J.T.S. Irvine, Nature 439 (2006) 568-571. doi:10.1038/nature04438

[7] J.Q. Li and P. Xiao, J. Eur. Cram. Soc. 21 (2001) 659-668. doi:10.1016/S0955-2219(00)00242-9

[8] S.P. Jiang and S.H. Chan, J. Mater. Sci. 39 (2004) 4405-4439. doi:10.1023/B:JMSC.0000034135.52164.6b

[9] C.M. Chun and J.D. Mumford, J. Electrochem. Soc. 147 (2000) 3680-3686. doi:10.1149/1.1393958

[10] S.B. Adler, Solid State Ionic. 135 (2000) 603-612. doi:10.1016/S0167-2738(00)00423-9

[11] S.B. Adler, J.A. Lane and B.C.H. Steele, J. Electrochem. Soc. 143 (1996) 3554-3564. doi:10.1149/1.1837252

[12] Y. Matsuzaki and I. Yasuda, Solid State Ionics 132 (2000) 261-269. doi:10.1016/S0167-2738(00)00653-6

[13] R.J. Gorte, S. Park, J.M. Vohs and C. Wang, Adv. Mater. 12 (2000) 1465-1469. doi:10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9

[14] J.T.S. Irvine, F.G. Jones and P.A. Connor, International Patent Application, PC/GB2002/ 004726.

[15] J.T.S. Irvine and S. Tao, British Patent Application, 2002, 0217794.79020115.3.

[16] S. Linderoth, P.V. Hendriksen, M. Mogensen and N. Langvad, J. Mater. Sci. 31 (1998) 5077-5082. doi:10.1007/BF00355908

[17] Z. Yang, M.S. Walker, P. Singh, J.W. Stevenson and T. Norby, J. Electrochem. Soc. 151 (2004) B669-B678. doi:10.1149/1.1810393

[18] N.Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x

[19] N.Q. Minh, Solid Sate Ionics 174 (2004) 271-277. doi:10.1016/j.ssi.2004.07.042

[20] S.C. Singhal, Solid State Ionics 135 (2000) 305- 313. doi:10.1016/S0167-2738(00)00452-5

[21] S. Tao and J.T.S. Irvine, Nat. Mater. 2 (2003) 320- 323. doi:10.1038/nmat871

[22] M.L. Perry and T.F. Fuller, J. Electrochem. Soc. 149 (2002) S59-S67. doi:10.1149/1.1488651

[23] W.J. Quadakkers, H. Greiner and W. Kock, Proceedings of the 1st European SOFC Forum, U Bossel (Ed.), Switzerland, (1994), p. 525.

[24] J.M. Bastidas, J.L. Polo, C.L. Torres and E. Cano, Corros. Sci. 43 (2001) 269-281. doi:10.1016/S0010-938X(00)00082-2

[25] J.M. Bastidas, C.L. Torres, E. Cano and J.L. Polo, Corros. Sci. 44 (2002) 625-633. doi:10.1016/S0010-938X(01)00072-5

[26] J.M. Ruíz-Romero, F. Corpas, F.J. Iglesias, L.E.G. Cambronero and J.M. Ruíz-Prieto, Rev. Metal. Madrid Vol. Ext. (2005) 269-271.

[27] L. Narváez, E. Cano, D.M. Bastidas and P.P. Gómez, Rev. Metal. Madrid Vol. Ext. (2005) 160-164.

[28] Z. Yang, K.S. Well, D.M. Paxton and J.W. Stevenson, J. Electrochem. Soc. 150 (2003) A1188- A1201. doi:10.1149/1.1595659

[29] W.J. Quadakkers, V. Shemet, D. Sebold, R. Anton, E. Wessel and L. SINGHEISER, Surf. Coat. Tech. 199 (2005) 77-82. doi:10.1016/j.surfcoat.2004.11.038

[30] J.L. Polo, E. Cano, D.Y. Kong and J.M. Bastidas, Corrosion 58 (2002) 670-674.

[31] V. Kochubey, H. AL-Badairy, G. Tatlock, J. Legoze, D. Naumenko and W.J. Quadakkers, Mater. Corros. 56 (2005) 848-853. doi:10.1002/maco.200503915

[32] N.Q. Minh and T. Takahashi, : Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, (1995), p. 230.

[33] M. González-Cuenca, W. Zipprich, B.A. Boukamp, G. Pudmich and F. Tietz, Fuel Cells 1 (2001) 256- 264. doi:10.1002/1615-6854(200112)1:3/4<256::AID-FUCE256>3.0.CO;2-I

[34] Y. Larring, R. Haugsrud and T. Norby, J. Electrochem. Soc. 150 (2003) B374-B379. doi:10.1149/1.1587726

[35] C. Wagner, Z. Phys. Chem. 21 (1933) 25-41.

[36] Z. Yang, M.S. Walker, P. Singh and J.W. Stevenson, Electrochem. Solid-State Lett. 6 (2003) B35-B37. doi:10.1149/1.1603012

[37] N. Bowler and Y. Huang, Meas. Sci. Technol. 16 (2005) 2193-2200. doi:10.1088/0957-0233/16/11/009

[38] W.A. Meulenberg, O. Teller, U. Flesch, H.P. Buchkremer and D. Stever, J. Mater. Sci. 36 (2001) 3189-3195. doi:10.1023/A:1017930201907

[39] Y. Matsuzaki and I. Yasuda, J. Electrochem. Soc. 148 (2001) A126-A131. doi:10.1149/1.1339869

[40] K. Hilpert, D. Das, M. Miller, D.H. Peck and R. Weiss, J. Electrochem. Soc. 143 (1996) 3642-3647. doi:10.1149/1.1837264

[41] V.A.C. Haanappel, V. Shemet, I.C. Vinke, M. Gross, T. Koppitz, N.H. Menzler, M. ZAHID and W.J. Quadakkers, J. Mater. Sci. 40 (2005) 1583-1592. doi:10.1007/s10853-005-0657-0

[42] W.R. Osorio, C.M.A. Freire and A. Gracia, Rev. Metal. Madrid Vol. Ext. (2005) 160-164.

[43] J.A. Picas, A. Forn, R. Rilla and E. Martin, Rev. Metal. Madrid Vol. Ext. (2005) 197-201.

[44] D.G. Morris and M.A. Muñoz-Morris, Rev. Metal. Madrid Vol. Ext. (2005) 498-501.

[45] Fuel Cell Handbook, 5th Edition, EG&G Services, Parsons, Inc. and Science Applications International Corporation, US Department of Energy, Morgantown, West Virginia, (2002).

[46] J.E. Bauerle, J. Phys. Chem. Solids 30 (1969) 2657- 2670. doi:10.1016/0022-3697(69)90039-0

[47] T. Van Dijk and A.J. Burggraaf, Phys. Stat. Sol. 63 (1981) 229-240. doi:10.1002/pssa.2210630131

[48] E.J.L. Schouler, N. Mesbahi and G. Vitter, Solid State Ionics 9 (1983) 989-996. doi:10.1016/0167-2738(83)90120-0

[49] S.B. Adler, J.A. Lane and B.C.H. Steele, J. Electrochem. Soc. 144 (1997) 1881-1890. doi:10.1149/1.1837696

[50] J. Agrisuelas, J.J. García-Jareño, J. Gregori, D. Giménez-Romero, R. González, M.P. Peña and F. Vicente, Rev. Metal. Madrid Vol. Ext. (2005) 265-268.

[51] X. Wang, J. Mei and P. Xiao, J. Eur. Ceram. Soc. 21 (2001) 855-859. doi:10.1016/S0955-2219(00)00291-0

[52] U. Rammelt and G. Reinhard, Electrochim. Acta 35 (1990) 1045-1049. doi:10.1016/0013-4686(90)90040-7

[53] Z. Kerner and T. Pajkossy, Electrochim. Acta 46 (2000) 207-211. doi:10.1016/S0013-4686(00)00574-0

[54] O. Comineli, H. Luo, H.M. Liimatainen and L.P. Karjalainen, Rev. Metal. Madrid Vol. Ext. (2005) 407-411.

[55] E. Peón, A. Jimenez-Morales, E. Fernández-Escalante, M.C. Garciá-Alonso, M.L. Escudero and J.C. Galván, Rev. Metal. Madrid Vol. Ext. (2005) 479-482.

[56] M. Cai and S.-M. Park, J. Electrochem. Soc. 143 (1996) 3895-3902. doi:10.1149/1.1837313

[57] G.O. Ilevbare and J.R. Scully, Corrosion 57 (2001) 134-152.

[58] C.H. Hsu and F. Mansfeld, Corrosion 57 (2001) 747-748.

[59] M. Kupezyk and W. Mistak, Rev. Metal. Madrid Vol. Ext. (2005) 483-487.

[60] K.S. Cole and R.H. Cole, J. Chem. Phys. 10 (1942) 98-105. doi:10.1063/1.1723677

[61] D.W. Davidson and R.H. Cole, J. Chem. Phys. 19 (1951) 1484-1490. doi:10.1063/1.1748105

[62] S. Havriliak and S. Negami, Polymers 8 (1967) 161-210. doi:10.1016/0032-3861(67)90021-3

[63] M. Sluyters-Rehbach and J.H. Sluyters, : Comprehensive Treatise of Electrochemistry, E. Yeager, J.O’M. Bockris, B.E. Conway, S. Sarangapani, (Eds.), Vol. 9, Plenum Press, New York, (1984), p. 274.

[64] S.B. Adler, Solid State Ionic. 111 (1998) 115-124. doi:10.1016/S0167-2738(98)00179-9

[65] E. Barsoukov and J.R. Macdonald, : Impedance Spectroscopy Theory, Experimental, and Applications, 2nd Ed. Wiley-Interscience, Hoboken, New Jersey, (2005), p. 54.

[66] J.L. Polo, E. Cano and J.M. Bastidas, J. Electroanal. Chem. 537 (2002) 183-187. doi:10.1016/S0022-0728(02)01224-X

Downloads

Published

2006-12-30

How to Cite

Bastidas, D. M. (2006). High temperature corrosion of metallic interconnects in solid oxide fuel cells. Revista De Metalurgia, 42(6), 425–443. https://doi.org/10.3989/revmetalm.2006.v42.i6.41

Issue

Section

Articles