Criteria for prediction of plastic instabilities for hot working processes. (Part II. Characterization of plastic flow of medium carbon microalloyed steel using phenomenological and continuum criteria)

Authors

  • A. Al Omar Departamento de Ingeniería Mecánica, EPSEM, Universidad Politécnica de Cataluña
  • I. Alcelay Departamento de Ingeniería Mecánica, EPSEM, Universidad Politécnica de Cataluña
  • J. M. Prado Centro Tecnológico de Manresa

DOI:

https://doi.org/10.3989/revmetalm.0937

Keywords:

Hot working, Microalloyed steel, Plastic instabilities maps, Dynamic recrystallization, Flow localization

Abstract


In the study of hot forming processes the knowledge of interaction between microstructural behaviour and control process parameters such as temperature, strain rate and strain is very important. In the last decades, processing maps have been developed to design, control and optimize the hot deformation of various metallic materials. In this work, in order to study the hot formability of medium carbon microalloyed steel, during hot compression tests, a comparative study between two types of processing maps constructed using phenomenological and thermodynamic continuum criteria have been carried out. The analysis of the maps indicates that the studied steel does not undergo any type of plastic instability. However, the maps corresponding to the deformation of ε = 0,6 reveal a domain of dynamic recrystallization, considered as the more efficiently domain within the “safe” region process. This domain is centered at 1150 °C and 10 s–1. Also, the comparative study of the obtained results shows the difference between the positions of plastic deformation domains predicted by the two criteria.

Downloads

Download data is not yet available.

References

[1] T. Gladman, Ironmaking Steelmaking 16 (1989) 241-245.

[2] F.B. Pickering, Physical metallurgy and the design of steels, Cap. 4, Ed. Applied Science Publishers, Essex, 1978.

[3] W.C. Leslie, The physical metallurgy of steels, Cap. 6, Ed. McGraw Hill International, Tokyo, Japón, 1982.

[4] C.A. Hernández, S. F. Medina, J. E. Mancilla y V. Blázquez, Rev. Metal. Madrid 28 (1992) 369-382.

[5] S. F. Medina y J. E. Mancilla, ISIJ Int. 36 (1996) 1063-1069. doi:10.2355/isijinternational.36.1063

[6] J. Castellanos, V. Gutiérrez, I. Rieiro, O. A. Ruano y M. Carsí, Rev. Metal. Madrid 45 (2009), doi: 10.3989/revmetalm.0837.

[7] J. Luo, M. Li, W. Yu y H. Li, Mater. Sci. Eng. A 504 (2009) 90-98. doi:10.1016/j.msea.2008.10.020

[8] S.V.S. Narayana Murty y B. Nageswara Rao, J. Mater. Process. Technol. 14 (2000) 103-109.

[9] Y.V.R.K. Prasad y S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, Ohio, 1997.

[10] A. Al Omar, Tesis Doctoral,Universidad Politécnica de Cataluña, 1996.

[11] A. Al Omar, J.M. Cabrera y J.M. Prado, Scr. Mater.34 (1996) 1.303-1.308.

[12] A. Al Omar y J.M. Prado, Rev. Metal. Madrid 33 (1997) 89-100.

[13] A. Al Omar, J.M. Cabrera y J.M. Prado, Rev. Metal. Madrid 33 (1997) 153-160.

[14] I. Rieiro, A. Fernández, A. Martínez y M. Carsí, Rev. Metal. Madrid 34 (1998) 355-366.

[15] I. Rieiro, M. Cars› y O.A. Ruano, Mater. Sci. Technol. 25 (2009) 995-1.002.

[16] T. Sakai y J.J. Jonas, Acta Metall. 32 (1984) 189- 209. doi:10.1016/0001-6160(84)90049-X

[17] M.J. Luton y C.M. Sellars, Acta Metall. 17 (1969) 1.033-1.043.

[18] H.J. McQueen y J.J. Jonas, Treatise on Materials Science and Technology 6 Academic Press, 1975, pp. 393-493.

[19] F. Montheillet, J. J. Jonas y K.W. Neale, Metall. Trans. A 27 (1996) 232-235. doi:10.1007/BF02647764

[20] A. Al Omar, A. Chenaoui, R. Dkiouak, J.M. Cabrera y J.M. Prado, Rev. Metal. Madrid 42 (2006) 103-113.

[21] S.L. Semiatin y J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, Ohio, 1984.

[22] S. I. Oh, S. L. Semiatin y J. J. Jonas, Metall. Trans. A 23 (1992) 963-975.

[23] E. Rauch, G. R. Canova, J. J. Jonas y S. L. Semiatin, Acta Metall. 33 (1985) 465-476.

[24] P. Dadras y J. F. Thomas, Jr., Res. Mechanica Letters 1 (1981) 97.

[25] J.K. Chakravartty, R. Kapoor, S. Banerjee y Y.V.R.K. Prasad, Mater. J. Nucl. Mater. 362 (2007) 75-86. doi:10.1016/j.jnucmat.2006.11.007

[26] Y.V.R.K. Prasad y K.P. Rao, Mater. Sci. Eng. A 391 (2005) 141-150. doi:10.1016/j.msea.2004.08.049

[27] P.V. Sivaprasad, S.L. Mannan y Y.V.R.K. Prasad, Mater. Sci. Technol. 20 (2004) 1.545-1.550.

[28] Nho-Kwang Park, Jong-Taek Yeom y Young- Sang Na, J. Mater. Process. Technol. 130- 131(2002) 540-545.

[29] Yi Liu, Rui Hu, Jinshan Li, Hongchao Kou, Hongwei Li, Hui Chang y Hengzhi Fu, J. Mater. Process. Technol. 209 (2009) 4.020-4.026.

[30] K. Muraleedharan, y. V. R. K. Prasad Y V. Singh, Mater. Sci. Eng. A 245 (1998) 88-99.

[31] S. L. Semiatin y G. D. Lahoti, Metall. Trans. A 13 (1982) 275-288.

[32] S. L. Semiatin y G. D. Lahoti, Metall. Trans. A 12 (1981) 1.719-1.728.

Downloads

Published

2010-04-30

How to Cite

Al Omar, A., Alcelay, I., & Prado, J. M. (2010). Criteria for prediction of plastic instabilities for hot working processes. (Part II. Characterization of plastic flow of medium carbon microalloyed steel using phenomenological and continuum criteria). Revista De Metalurgia, 46(2), 162–172. https://doi.org/10.3989/revmetalm.0937

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>