Deformation induced martensite in AISI 316 stainless steel

Authors

  • N. Solomon “Stefan cel Mare” Suceava University
  • I. Solomon (Former Associate Professor) “Dunarea de Jos”, Galati University

DOI:

https://doi.org/10.3989/revmetalm.0920

Keywords:

Plastic deformation at low temperature, Austenitic stainless steel, Strain-induced martensitic transformation, Numerical simulation

Abstract


The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

Downloads

Download data is not yet available.

References

[1] M. Sanga, N. Yukawa and T. Ishikawa, Proc. ISAEM-97, Toyohashi, Japan, 1997, M. Umemoto and S. Kobayashi (Eds.), Toyohashi, Japan, 1997.

[2] P. Gabrielson, E. Schedin and G. Ekstrand, Proc. 6th ICTP, Vol. II, Nuremberg, Germany, 1999, M.Geiger (ed.), Springer, Germany, 1999, pp.1383-1388.

[3] N. Solomon and I. Solomon, Proc. 2nd Int. Seminar. Precision Forging, Osaka, Japan, 2000, pp. 175-181.

[4] E. S. Perdahciogˇlu, H.J.M. Geijselaers and M. Groen, Scr. Mater. 58 (2008) 947-950. doi:10.1016/j.scriptamat.2008.01.023

[5] H.F. Gomes de Abreua, S. Santana de Carvalhoa, Pedro de Lima Netoa, R. Pires dos Santosa, V.N. Freirea, P. Maria de Oliveira Silvab and S.S.M. Tavaresc, Mater. Res. 10 (2007) 359-366.

[6] Z. Tourki, Z. Ktari, H. Sidhom and A. Gahbiche, 18ème CFM2007, Grenoble, France, 2007, L’édition électronique à l’INIST-CNRS, France, 2008, pp. CFM2007-0933.

[7] I. Solomon and N. Solomon, Studiul materialelor/ Materials Science, Ed. OID, Bucharest, Romania, 1999, pp. 157-203.

[8] S. Grigull, Textures and Microstruct. 35 (2003) 153-162. doi:10.1080/07303300310001628616

[9] H. Mirzadeh and A. Najafizadeh, Mater. Charact. 59 (2008)1650-1654. doi:10.1016/j.matchar.2008.03.004

[10] J. Talonen and H. Hänninen, Acta Mater. (2007) 6108-6118. doi:10.1016/j.actamat.2007.07.015

[11] W. Ozgowicz and A. Kurc, J Achiev. Mater. Manuf. Eng. (2009) 19-26.

[12] N. N., Contract 248/1999, Research on corrosion behaviour of heat exchanger plates from Apaterm SA, Galati, Romania, 1999.

[13] K. Chandra, V. Kain and P. Ganesh, J Mater. Eng. Perform. 17 (2008)115-122. doi:10.1007/s11665-007-9117-0

[14] J. Ch. Videau, G. Cailletaud and A. Pineau, J. Phys. III 4 (1994) 227-232.

[15] O.C. Zienkiewicz, The Finite Element Method, Third Edition, McGraw-Hill, London, UK, 1977, pp. 350-443.

[16] N. N., MARC/AutoForge/User manual.

[17] K. Mumtaz, S. Takahashi, J. Echigoya, Lf. Zhang, Y. Kamada and M. Sato, J Mater. Sci. 38 (2003) 3037-3050. doi:10.1023/A:1024744307549

[18] N. Nishura, F. Fujita, R. Yagi, N. Suzuki, S. Murata, Proc. 6th ICTP, Vol. I, Nuremberg, Germany, 1999, M.Geiger (Ed.), Springer, Germany, 1999, pp.183-188.

[19] C. Gheorgies, Controlul structurii fine a metalelor cu radiatii X/ Metals fine structure control with X-ray diffraction, Ed Tehnica, Bucuresti, Romania, 1990, pp. 242-271.

[20] H. Leidkeiser, Corros. Sci. 22 (1982) 1089- 1096. doi:10.1016/0010-938X(82)90095-6

[21] J. C. Tverberg, MBAA TQ 38 (2001) 67-82.

Downloads

Published

2010-04-30

How to Cite

Solomon, N., & Solomon, I. (2010). Deformation induced martensite in AISI 316 stainless steel. Revista De Metalurgia, 46(2), 121–128. https://doi.org/10.3989/revmetalm.0920

Issue

Section

Articles