Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW

Authors

  • E. S. Puchi-Cabrera Escuela de Ingeniería Metalúrgica y Ciencia de los Materiales, Facultad de Ingeniería, Universidad Central de Venezuela
  • R. A. Saya-Gamboa Escuela de Ingeniería Metalúrgica y Ciencia de los Materiales, Facultad de Ingeniería, Universidad Central de Venezuela
  • J. G. La Barbera-Sosa Escuela de Ingeniería Metalúrgica y Ciencia de los Materiales, Facultad de Ingeniería, Universidad Central de Venezuela
  • M. H. Staia Escuela de Ingeniería Metalúrgica y Ciencia de los Materiales, Facultad de Ingeniería, Universidad Central de Venezuela
  • V. Ignoto-Cardinale Escuela de Ingeniería Metalúrgica y Ciencia de los Materiales, Facultad de Ingeniería, Universidad Central de Venezuela
  • J. A. Berríos-Ortiz Escuela de Ingeniería Mecánica, Universidad de El Salvador
  • G. Mesmacque Laboratoire de Mécanique de Lille, Université de Lille 1, Mécanique des Materiaux

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i3.67

Keywords:

Welded joints, 316L stainless steel, Fatigue behavior, Metallic transference, Pulsed arc, Short circuit

Abstract


An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit) and the O2 content in the Ar/O2 gas mixture, of the gas-metal arc welding process (GMAW), on the fatigue life under uniaxial conditions of welded joints of 316L stainless steel. It has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. Firstly, through the modification of the radius of curvature at the joint between the welding toe and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O2 content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures.

Downloads

Download data is not yet available.

References

[1] Stainless Steel, ASM Specialty Handbook, J. R. Davis (Ed.), ASM International, Materials Park, OH, USA, 1994.

[2] S. Venugopal, S. L. Mannan y Y. V. R. K. Prasad, Mater. Sci. Technol. 9 (1993) 899-906.

[3] M. A. Martínez, J. Ordieres, J. Botella, R. Sánchez y R. Parra, Rev. Metal. Madrid Vol. Extr. (2005) 64-68.

[4] J. Oñoro, R. Gamboa y C. Ranninger, Rev. Metal. Madrid 42 (2005) 4-10.

[5] D. Radaj, C. M. Sonsino y D. Flade, Int. J. Fatigue 20 (1998) 471-480. doi:10.1016/S0142-1123(98)00012-7

[6] T. L. Teng, C. P. Fung y P. H. Chang, Eng Fail. Anal. 10 (2003) 131–151. doi:10.1016/S1350-6307(02)00068-7

[7] J. Rudolph, E. Weiss, Chemie Infenieur Technik 74 (2002) 33-40. doi:10.1002/1522-2640(200202)74:1/2<33::AID-CITE33>3.0.CO;2-1

[8] M. Valsan, K. B. Sankara, R. Sandhya y S. L. Mannan, Mater Sci. Eng. A 149 (1992) 9–12. doi:10.1016/0921-5093(92)90391-D

[9] M. Valsan, K. Sundararaman, K. B. S. Rao y S. L. Mannan, Metall. Mater. Trans. A 26 (1995) 1.207–1.219.

[10] y. X. Zhao, Q. Gao, J-N Wang, Fatigue Fract. Eng. Mater. Struct. 22 (1999) 469-480. doi:10.1046/j.1460-2695.1999.00196.x

[11] G. Cheng, Z. B. Kuang, Z. W. Lou y L. Hua, Int. J. Pres. Ves. Pip. 67 (1996) 229-242. doi:10.1016/0308-0161(94)00020-4

[12] K. B. Sankara, M. Valsan y S. L. Mannan, Mater. Sci. Eng. A 130 (1990) 67-82. doi:10.1016/0921-5093(90)90082-E

[13] X. Chen y S-M Zhao, Eng. Fail. Anal. 12 (2005) 616-622. doi:10.1016/j.engfailanal.2004.08.001

[14] V. Amigó, V. Bonache, L. Teruel y A. Vicente, Rev. Metal. Madrid 41 (2005) 90-97.

[15] S. J. Maddox, Int. J. Fatigue 11 (1975) 221–236.

[16] K. H. Frank y J. W. Fisher, Proc. ASCE 105 (1979) 1.727-1.739.

[17] C. Miki, T. Mori, K. Sakamoto y T. Sasaki, Struct. Eng./Earthq. Eng. JSCE 4 (1987) 289-297.

[18] K. Takena, F. Itoh, F. Nishino y C. Miki, Struct. Eng./Earthq. Eng. JSCE 5 (1988) 393-396.

[19] M. Sakano, H. Arai y T. Nishimura, Proc. JSCE 410/I-12 (1989) 195-203.

[20] C. Miki, M. Sakano, y. Toyoda y T. yoshizawa, Struct. Eng./Earthq. Eng. JSCE 7 (1990) 123–131.

[21] P. C. Paris y F. Erdogan, J. Basic Eng. 85 (1963) 528-538.

[22] G. C. Sih, Int. J. Fract. 10 (1974) 305–321. doi:10.1007/BF00035493

[23] G. C. Sih y B. M. Barthelemy, Eng. Fract. Mech. 13 (1980) 439-451. doi:10.1016/0013-7944(80)90076-4

[24] D. H. Choi y H. y. Choi, Theor. Appl. Fract. Mech. 44 (2005) 17-27. doi:10.1016/j.tafmec.2005.05.002

[25] E. S. Puchi-Cabrera, G. Mesmacque, M. Voda y F. Roudet, Proc. Internat. Institute of Welding, XIII-2001-03, Bucharest, Romania, 2003.

Downloads

Published

2007-06-30

How to Cite

Puchi-Cabrera, E. S., Saya-Gamboa, R. A., La Barbera-Sosa, J. G., Staia, M. H., Ignoto-Cardinale, V., Berríos-Ortiz, J. A., & Mesmacque, G. (2007). Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW. Revista De Metalurgia, 43(3), 215–227. https://doi.org/10.3989/revmetalm.2007.v43.i3.67

Issue

Section

Articles