Mathematical modelling of mixing in gas stirred ladles

Authors

  • M. A. Ramírez-Argáez Facultad de Química, Universidad Nacional Autónoma de México (UNAM)
  • J. Tapia Alumnos de la Maestría en Metalurgia del Instituto Tecnologico de Morelia
  • J. Espinoza Alumnos de la Maestría en Metalurgia del Instituto Tecnologico de Morelia
  • E. Alcantar Alumnos de la Maestría en Metalurgia del Instituto Tecnologico de Morelia

DOI:

https://doi.org/10.3989/revmetalm.2006.v42.i1.7

Keywords:

Fluid flow, Mixing, Multifluid model, Steel ladle, Gas injection

Abstract


In this work injection of air into a water physical model of an industrial steel ladle was mathematically simulated. Calculations were developed based on a multiphase Eulerian fluid flow model involving principles of conservation of mass, momentum and chemical species on both phases in order to predict turbulent flow patterns and mixing times in both centric and eccentric injections. Mixing phenomena was addressed by injecting a tracer and it was analyzed the effect of the gas flow rate, injector position, number of injectors and geometry of the ladle on the mixing time. It was concluded that the optimum injection conditions is using a single injector at 2/3 of the radius with high gas flow rates. It is shown that incrementing the number of injectors is detrimental on mixing. Finally, quantitative correlations of mixing time as a function of gas flow rate, position of the injector, number of injectors, geometry of the ladle and mass of liquid were obtained.

Downloads

Download data is not yet available.

References

[1] J. A. Gómez-Urquiza, Memorias del XXII Simposio Nacional de Siderurgia, vol 1, Morelia, México, 2001, A. Conejo, J. J. Barreto y J. J. Uribe (Eds.), pp. 19-1 a 19-23.

[2] F. Chávez-Alcalá, A. Cruz-Ramírez y J. Romero-Serrano, Rev. Metal. Madrid 40 (2004) 39-45.

[3] D. Mazumdar y R. I. L. Guthrie, Metall. Trans. B 17B (1986) 725-733. doi:10.1007/BF02657134

[4] H. Turkoglu y B. Farouk, ISIJ Int. 30 (1990) 961-970. doi:10.2355/isijinternational.30.961

[5] T. Stapurewicz y N. J. Themelis, Can. Metall. Q. 26 (1987) 123-128.

[7] K. Nakanishi, T. Fuji y J. Szekely, Ironmaking Steelmaking 2 (1975) 193-197.

[8] U. P. Sinha y M. J. Mcnallan, Metall. Trans.B 16B (1985) 850-853. doi:10.1007/BF02667523

[9] P. E. Anagbo, J. K. Brimacombe y A. H. Castillejos, Can. Metall. Q. 28 (1989) 323- 330.

[10] G. G. Krishna-Murthy. S. P. Mehrotra y A. Ghosh, Metall. Trans. B 19 (1988) 885- 892. doi:10.1007/BF02651412

[11] D. Mazumbar y R.I.L. Guthrie, ISIJ Int. 35 (1995) 1-20. doi:10.2355/isijinternational.35.1

[12] B. E. Launder y D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3 (1974) 269-289. doi:10.1016/0045-7825(74)90029-2

[13] F. Tapia-Ortiz, Tesis de Maestría, Centro de Graduados en Metalurgia, Instituto Tecnológico de Morelia, 2002.

[14] M. Iguchi, K. Nakamura y R. Tsujino, Metall, Mat Trans, B Process Metall, Mat, Process Sci. 29B (1998) 569-575.

[15] Y. Takatsuka y M. Iguchi, ISIJ Int. 41 (2001) 124-127. doi:10.2355/isijinternational.41.124

[16] Y. Pan, D. Guo y C. Li, ISIJ Int. 34 (1994) 794-801. doi:10.2355/isijinternational.34.794

[17] D. Mazumdar y R. L. Guthrie, ISIJ Int. 33 (1993) 513-516. doi:10.2355/isijinternational.33.513

[18] S. Asai, T. Okamoto, J. C. He y I. Muchi, Trans. Iron Steel Inst. Jpn. 23 (1983) 43-50.

[19] G. G. Krishna-Murthy, S. P. Mehrotra y A. Ghosh, Metall. Trans. B 19 (1988) 839- 850. doi:10.1007/BF02651408

Downloads

Published

2006-02-28

How to Cite

Ramírez-Argáez, M. A., Tapia, J., Espinoza, J., & Alcantar, E. (2006). Mathematical modelling of mixing in gas stirred ladles. Revista De Metalurgia, 42(1), 56–75. https://doi.org/10.3989/revmetalm.2006.v42.i1.7

Issue

Section

Articles