High temperature fracture mechanisms on non-oriented electrical steels

Authors

  • E. O. García-Sánchez Centro de Investigación y de Estudios Avanzados, Unidad Saltillo
  • E. A. Treviño-Luna Centro de Investigación y de Estudios Avanzados, Unidad Saltillo
  • A. Salinas-Rodríguez Centro de Investigación y de Estudios Avanzados, Unidad Saltillo
  • L. A. Leduc-Lezama HYLSA-DAP Monterrey N.L.

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i4.72

Keywords:

Hot ductility, Fracture mechanisms, AlN precipitation

Abstract


In this research work the effect of deformation temperature on the hot ductility of non-oriented electrical steels (0.6 % Si-0.3 Al %) was studied using high temperature tensile tests. The specimens were machined from two thin slabs (50 mm thickness) produced by CSP process (Compact Strip Process), one of them using 100 % sponge iron and the other using 67 % scrap and 33 % sponge iron. The tensile tests were carried out at constant strain rate (5×1010–4 s–1), and a temperature range from 850 to 1,200 °C. The results showed that the ductility decreased with the increment in the temperature until approximately 1,000 °C. At higher temperatures, a ductility recovery was observed only in the steel fabricated without scrap. Scanning Electron Microscopy on fracture surfaces showed that the loss of ductility is associated with intergranular cracking promoted by the austenitic transformation and AlN grain boundaries precipitation.

Downloads

Download data is not yet available.

References

[1] B. Mintz, S. yue y J.J. Jonas, Int. Mater. Rev. 36 (1991) 187-217.

[2] J. Lewis, J. J. Jonas y B. Mintz, ISIJ Int.38 (1998) 300-308. doi:10.2355/isijinternational.38.300

[3] B. Mintz, ISIJ Int. 39 (1999) 833-855 doi:10.2355/isijinternational.39.833

[4] P, J. Wray, Metall. Trans. (1984) 2.059-2.073.

[5] E. Díaz, Tesis Centro de Investigación y Estudios Avanzados del IPN, (2006).

[6] J.H. Oh, S-H. Cho y J. J. Jonas, ISIJ Int. 41 (2001) 484-491. doi:10.2355/isijinternational.41.484

[7] B. Mintz, A. Tuling y A. Delgado, Mat. Sci. Technol. 19 (2003) 1.721-1.726.

[8] K. Ushioda, O. Akisue, K, Koyama y T. Hayashida, Developments in the Annealing of Sheet Steels, R. Pradhan and I. Gupta (Eds.), The minerals Metals and Materials Society, 1992, pp. 261-286.

[9] F.G. Wilson y T. Gladman, Int. Mat. Rev. 33 (1988) 221-286.

[10] S.F. Medina, M. Chapa, M. Gómez, A. Quispe y V. López y B. Fernández, Rev. Metal. Madrid 39 (2003) 408-417.

[11] A. Al Omar, A.Chenaoui, R. Dkiouak, J. M. Cabrera y J. M. Prado, Rev. Metal. Madrid 42 (2006) 103-113.

[12] J. Calvo, J. M. Cabrera y J. M. Prado, Rev. Metal. Madrid 42 (2006) 11-17.

[13] H. Matsuoka, K. Osawa, M. Ono y M. Ohmura, ISIJ Int. 37 (1997) 255-262. doi:10.2355/isijinternational.37.255

[14] O. Comineli, H. Luo, H.M. Liimatainen y L.P. Karjalainen, Rev. Metal. Madrid Vol. Extr. (2005) 407-411.

[15] B. Mintz, J.J. Jonas y S. Yue, Recrystallization ’90, T. Chandra (Ed.), The minerals, Metals and Materials Society, 1990, pp. 553-558.

[16] B. Dood y Y. Bai, Ductile fracture and Ductility, Academic Press, 1987, pp. 17.

Downloads

Published

2007-08-30

How to Cite

García-Sánchez, E. O., Treviño-Luna, E. A., Salinas-Rodríguez, A., & Leduc-Lezama, L. A. (2007). High temperature fracture mechanisms on non-oriented electrical steels. Revista De Metalurgia, 43(4), 266–271. https://doi.org/10.3989/revmetalm.2007.v43.i4.72

Issue

Section

Articles