Analysis of the deoxidation process of copper with manganese using a platinum electrode-based sensor prepared by MOCVD

Authors

  • S. González-López Metallurgy and Materials Department, IPN-ESIQIE
  • A. Romero-Serrano Metallurgy and Materials Department, IPN-ESIQIE
  • R. Vargas-García Metallurgy and Materials Department, IPN-ESIQIE
  • B. Zeifert Metallurgy and Materials Department, IPN-ESIQIE
  • A. Cruz-Ramírez Metallurgy and Materials Department, IPN-ESIQIE

DOI:

https://doi.org/10.3989/revmetalm.0927

Keywords:

Copper deoxidation, Manganese, Oxygen sensor

Abstract


A sensor employing yttria-stabilized zirconia (YSZ) was used to determine the oxygen partial pressure and oxygen content in liquid Cu-Mn alloys in the range 1,100° to 1,300 °C. The YSZ sensors were coated with platinum electrode films deposited by metal organic chemical vapor deposition (MOCVD) to increase the conductivity of the measuring devices and to decrease their response time. The depth of the Pt film measured was 7 μm. At 1,200 and 1,300 °C fair agreement was obtained between the oxygen contents calculated from the measured probe EMF and those obtained by chemical analysis. The deoxidation process of liquid copper using Mn, Fe and P was analyzed by the interaction parameters model which showed that the minimum oxygen content at 1,200 °C was about 2, 90 and 500 ppm, using manganese, iron and phosphorus as deoxidation agents, respectively.

Downloads

Download data is not yet available.

References

[1] R. Ramammoorthy, P. Dutta and S.A. Akbar, J. Materials Sci. 38 (2003), 4.271-4.282.

[2] N. Miura, G. Lu and N. Yamazoe, J. Electrochem. Soc. 143 (1996) 609-613. doi:10.1149/1.1836487

[3] I. Natali-Sora, C. Schmid and C.M. Mori, Proc. 17th Riso Int. Symposium Materials Science: High Temperature Electrochemistry: Ceramics and Metals, Riso National Laboratory, Roskilde, Denmark, 1996, pp. 369-375.

[4] A. Sharma and P.D. Pacey, J. Electrochem. Soc. 140 (1993) 2.302-2.309.

[5] D. T. Dimitrov and C. D. Dushkin, Central European J. Chem. 3 (2005) 605-621. doi:10.2478/BF02475191

[6] P. Gómez, F. Reyes, J. Gutiérrez and G. Plascencia. Rev. Metal. Madrid, 45 (2009) 305-316.

[7] A. Hernández, A. Romero-Serrano and F. Chávez, ISIJ Int. 38 (1998) 126-131. doi:10.2355/isijinternational.38.126

[8] S. Seetheraman, D. Sichen and A. Jakobsson, Proc. Symp. Application of Sensors and Modeling to Materials Processing 1997, Orlando, Florida, EE. UU., 1997, pp.327-345.

[9] I. Barín, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Germany, (1989).

[10] S.P.S. Badwal and H.J. de Bruin, Phys. Stat. Sol. 54 (1979) 261-272. doi:10.1002/pssa.2210540133

[11] D.R. Stull and H. Prophet, JANAF Thermochemical Tables, U.S. Department of Commerce, Washington (1985).

[12] M. Iwase, E. Ichise and N. Yamada, Steel Res. (1985) 319-326.

[13] G.K. Sigworth and J.F. Elliot, Can. Met. Q. 13 (1974) 455-461.

[14] R. Schmid, Metall. Trans B, 14 (1983) 473-481. doi:10.1007/BF02654367

[15] S. Seetheraman, K. Abraham and L. Staffansson, Scand. J. Metall. 7 (1978) 176-180.

[16] A.D. Kulkarni, Metall. Trans, 4 (1973) 1.713-1.721.

[17] R. Schmid, Metall. Trans. B, 14 (1983) 473-481. doi:10.1007/BF02654367

Downloads

Published

2010-06-30

How to Cite

González-López, S., Romero-Serrano, A., Vargas-García, R., Zeifert, B., & Cruz-Ramírez, A. (2010). Analysis of the deoxidation process of copper with manganese using a platinum electrode-based sensor prepared by MOCVD. Revista De Metalurgia, 46(3), 219–226. https://doi.org/10.3989/revmetalm.0927

Issue

Section

Articles

Most read articles by the same author(s)