Matrix-reinforcement reactivity in P/M titanium matrix composites

Authors

  • V. Amigó Instituto de Tecnología de Materiales de la Universidad Politécnica de Valencia
  • F. Romero Instituto de Tecnología de Materiales de la Universidad Politécnica de Valencia
  • M. D. Salvador Instituto de Tecnología de Materiales de la Universidad Politécnica de Valencia
  • D. Busquets Instituto de Tecnología de Materiales de la Universidad Politécnica de Valencia

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i6.86

Keywords:

Ti composites, Interfacial reactivity, TiN particles, TiC particles, TiSi<sub>2</su> particles

Abstract


The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles is proposed in this paper, and for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi2) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analyzed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties.

Downloads

Download data is not yet available.

References

[1] F.H. Froes, JOM 56 (2004) 39. doi:10.1007/s11837-004-0143-1

[2] J.P. Beckman, Titanium alloys. Materials Properties Handbook, Ed. ASM International, Ohio, USA, 2000, pp. 1.137-1.143.

[3] C. Leyens y M. Peters, Titanium and titanium alloys, Ed. Wiley-VCH, 2003, pp. 258-260.

[4] F.H. Froes, Mater. Sci. Forum 437 (2003) 7-22.

[5] F.H. Froes, Mater. Technol. 15 (2000) 230-232.

[6] F.H. Froes, JOM 56 (2004) 30. doi:10.1007/s11837-004-0248-6

[7] F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen y V.A. Duz, JOM 56 (2004) 46-48. doi:10.1007/s11837-004-0252-x

[8] Y. Liu, L.F. Chena, H.P. Tang, C.T. Liu, B. Liu y B.Y. Huanga, Mater. Sci. Eng. A 418 (2006) 25–35. doi:10.1016/j.msea.2005.10.057

[9] C. Draney, F.H. Froes y J. Hebeison, Mater. Technol. 19 (2004) 140-152.

[10] C.L. Chu, Z.D. Yin, J.C. Zhu, P.H. Lin, G.J. Shen y S.D. Wang, J. Mater. Sci. Letters 20-11 (2001) 1.005-1.007.

[11] V.S. Moxson y F.H. Froes, JOM 53 (2001) 39-41. doi:10.1007/s11837-001-0147-z

[12] S.G. Warrier Y R.Y. Lin, Proc. ICCM/9, vol. 1, Madrid, España 1993, A. Miravete (Ed.) 1993, pp. 720-727.

[13] W. Tong, G. Rainchandran, T. Christman y T. Vreeland J. Acta Metal. Mater. 43 (1995) 235-250.

[14] S. Abkowitz, S.M. Abkowitz, H. Fisher y P.J. Schwartz, JOM 56 (2004) 37-41. doi:10.1007/s11837-004-0126-2

[15] Y. Qin, W. Lu, D. Zhang, J. Qin Y B. Ji, Mater. Sci. Eng. A 404 (2005) 42-48. doi:10.1016/j.msea.2005.05.098

[16] X.N. Zhang, C. Li, X.C. Li y L.J. He, Mater. Letters 57-21 (2003) 3.234-3.238.

[17] P. Mogilevsky, A. Werner y H.J. Dudek, Defect & Diff. FORUM 143 (1997) 585-590.

[18] K.M. Fox Y P. Bowen, Proc. ICCM/9, vol. 1, Madrid, España 1993, A. Miravete (Ed.), 1993, pp. 675-679.

[19] O.N. Dogan, J.A. Hawk, J.H. Tylczak, R.D. Wilson R.D. y R.D. Govier, Wear 225 (1999) 758-769. doi:10.1016/S0043-1648(99)00030-7

[20] F.H. Froes, H. Friedrich, J. Kiese Y D. Bergoint, JOM 56 (2004) 40-44. doi:10.1007/s11837-004-0144-0

[21] W. Diem, Auto Technology 5 (2001) 36-37. [22] D.M. Brunette, O. Tengvall, M. Textor y P. Thomson, Titanium and medicine, Ed. Springer-Verlag, 2001, pp. 1019.

[23] F.H. Froes, Mater. Technol. 17 (2002) 4-7.

[24] V.S. Moxson y F.H. Froes, Int. J. Powder Metall. 37 (2001) 59-65.

[25] M. Peters, J. Kumpfert, C.H. Ward y C. Leyens, Advan. Eng. Mater.5-6 (2003) 419-427. doi:10.1002/adem.200310095

[26] J.S. Montgomery y M.G.H. Wells, JOM 53 (2001) 29-32. doi:10.1007/s11837-001-0144-2

[27] C. Vahlas, I.W. Hall y I. Haurie, Mater. Sci. Eng. A 259 (1999) 269-278. doi:10.1016/S0921-5093(98)00905-8

[28] A. Vassel, Mater. Sci. Eng. A 263 (1999) 305-313. doi:10.1016/S0921-5093(98)01161-7

[29] M. Wang, W. Lu, J. Qin, F. Ma, J. Lu y D. Zhang, Mater. Design 27 (2006) 494–498. doi:10.1016/j.matdes.2004.11.030

[30] V. Amigó, F. Romero, M.D. Salvador, J. Candel y L. Reig, Proc. PowderMet 2006, vol. 7, San Diego, USA 2006, W.R. Gasbarre Y J.W. Von ARX (Eds.), 2006, pp. 44-53.

[31] R.M. German, Powder Metall. 47 (2004) 157-160. doi:10.1179/003258904225015563

[32] V. Amigó, F. Romero, J.J. Candel Y M.D. Salvador, Proc. Matcomp05, Valencia, España 2005, V. Amigó et al. Eds. 2005, 255-262.

[33] F. Romero, V. Amigó, E. Klyatskina. V. Bonache y J. Candel, Proc. Euro PM2005, vol. 2, Praga, Rep. Checa 2005, 237-242.

[34] H.A. Wriedt y J.L. Murray, 1987 ASM Handbook vol. 3, Ed. ASM International, Ohio, USA, 1992, pp. 299.

[35] D. Wexler, D. Parker, V. Palm V y A. Calka, Mater. Sci. Eng. A 375 (2004) 903-910. doi:10.1016/j.msea.2003.10.219

[36] Z. X. Guo Y B. Derby, Composites 25 (1994) 630-636. doi:10.1016/0010-4361(94)90195-3

[37] J.L. Murray, 1987 en ASM Handbook vol. 3, Ed. ASM International, Ohio, USA, 1992, pp. 114.

[38] S. Krishnamurphy, A.G. Jackson, H. Jones y F.H. Froes, Metall. Trans. A 19 (1988) 23-31. doi:10.1007/BF02669812

[39] J.L. Murray, 1987 en ASM Handbook vol. 3: Alloy Phase Diagrams, Ed. ASM International, Ohio, USA, 1992, pp. 367.

Downloads

Published

2007-12-30

How to Cite

Amigó, V., Romero, F., Salvador, M. D., & Busquets, D. (2007). Matrix-reinforcement reactivity in P/M titanium matrix composites. Revista De Metalurgia, 43(6), 434–447. https://doi.org/10.3989/revmetalm.2007.v43.i6.86

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>