Use of the Gurson-Tvergaard-Needleman (GTN) damage model to simulate small punch test on pre-cracked specimens

Authors

  • I. I. Cuesta Departamento de Ingeniería Civil, Universidad de Burgos
  • J. M. Alegre Departamento de Ingeniería Civil, Universidad de Burgos
  • H. Barbáchano Departamento de Ingeniería Civil, Universidad de Burgos

DOI:

https://doi.org/10.3989/revmetalmadrid.05XIIPMS

Keywords:

Small punch test, Pre-cracked specimen, Gurson-Tvergaard-Needleman damage model, Damage parameters, Ductile fracture

Abstract


Small Punch Test (SPT) is a feasible alternative to determine the mechanical properties in those cases where there is not enough material for conducting conventional tests. Nowadays, there is a great interest in using this test on precracked specimens (P-SPT) in order to determine the fracture properties of the material, as well. In the case of ductile material behaviour, theGurson-Tvergaard-Needleman (GTN) damagemodel can be used, based on a set of constitutive parameters, to reproduce the material behaviour up to final fracture. These constitutive parameters take into account the nucleation, growth and coalescence of microvoids as mechanisms of damage evolution in ductile materials. The aim of this paper is to develop a methodology for the identification of these constitutive parameters, based on the numerical adjustment of the experimental results obtained from the P-SPT tests.

Downloads

Download data is not yet available.

References

[1] J.M. Baik, J. Kameda y O. Back, Scr. Metall. Materialia 17 (1983) 1.443-1.447.

[2] X. Mao y H. Takahashi, J. Nucl. Mater. 150 (1987) 42-52. doi:10.1016/0022-3115(87)90092-4

[3] X.Mao, H. Takahashi y T. Kodaira, Mater. Sci. Eng. A I50 (1992) 231-236. doi:10.1016/0921-5093(92)90116-I

[4] T.Misawa, T. Adachi,M. Saito y Y. Hamaguchi, J. Nucl. Mater. 150 (1987) 194-202. doi:10.1016/0022-3115(87)90075-4

[5] T. Misawa, Y. Hamaguchi y M. Saito, J. Nucl. Mater. 155-157 (1988) 749-753. doi:10.1016/0022-3115(88)90409-6

[6] T. Misawa, S. Nagata, N. Aoki, J. Ishizaka y Y. Hamaguchi, J. Nucl.Mater. 169 (1989) 225-232. doi:10.1016/0022-3115(89)90538-2

[7] T.Misawa, K. Suzuki,M. Saito y Y. Hamaguchi, J. Nucl. Mater. 179-181 (1991) 421-424. doi:10.1016/0022-3115(91)90114-M

[8] T. Misawa, T. Ohtsuka, M. Seo y M. Saito, J. Nucl. Mater. 179-181 (1991) 611-614. doi:10.1016/0022-3115(91)90162-Z

[9] S.H. Chi, J.H. Hong y I.S. Kim, Scr. Metall. Materialia 30 (1994) 1.521-1.525.

[10] M.L. Saucedo-Muñoz, S.C. Liu, T. Hashida, H. Takahashi y H. Nakajima, Cryogenics 41 (2001) 713-719. doi:10.1016/S0011-2275(01)00135-7

[11] Y. Ruan, P. Spätig yM. Victoria, J. Nucl.Mater. 307-311 (2002) 236-239. doi:10.1016/S0022-3115(02)01194-7

[12] E.N. Campitelli, P. Spätig, R. Bonadé, W. Hoffelner y M. Victoria, J. Nucl.Mater. 335 (2004) 366-378. doi:10.1016/j.jnucmat.2004.07.052

[13] M.A. Contreras, C. Rodríguez, F.J. Belzunce, y C. Betegón, Fatigue Fract. Eng. Mater. Struct. 31 (2008) 727-737. doi:10.1111/j.1460-2695.2008.01259.x

[14] J. Ju, J. Jang y D. Kwon, Int. J. Press. Vessels Pip. 80 (2003) 221-228. doi:10.1016/S0308-0161(03)00131-5

[15] I.I. Cuesta, J.M. Alegre y R. Lacalle, J. A. Álvarez y F. Gutiérrez-Solana, Anal.Mec. 25 (2008) 486-491.

[16] I.I. Cuesta, J.M. Alegre y P.M. Bravo, Anal.Mec. Fract. 26 (2009) 382-387.

[17] ASTME 8M, Annual Book or ASTM Standards, Vol. 3.01, American Society for Testing and Materials, (2003).

[18] W. Ramberg y W. R. Osgood, Technical Note 902, National Advisory Committee for Aeronautics, Washington DC, EE. UU., 1943, pp. 1-13.

[19] J. Autillo, M.A. Contreras, C. Betegón, C. Rodríguez y F.J. Belzunce, Anal.Mec. Fract. 23 (2006) 77-83.

[20] J. Besson, L. Devillers-Guerville y A. Pineau, Eng. Fract. Mech. 67 (2000) 169-190. doi:10.1016/S0013-7944(00)00056-4

[21] A.L. Gurson, J. Eng.Mater. Tech. 99 (1977) 2-15. doi:10.1115/1.3443401

[22] A.L. Gurson, Proc. Int Conf. Fracture (Ed) DMR Taplin, Oxford, Inglaterra, Pergamon 2, 1977, pp. 357-364.

[23] V. Tvergaard, Adv. Appl. Mech. 27 (1990) 83-151. doi:10.1016/S0065-2156(08)70195-9

[24] V. Tvergaard y A. Needleman, ActaMetall. 32 (1985) 157-169. doi:10.1016/0001-6160(84)90213-X

[25] A. Needleman y V Tvergaard, Int. J. Fract. 49 (1991) 41-67. doi:10.1007/BF00013502

[26] M. Abendroth y M. Kuna, Computational Mater. Sci. 28 (2003) 633-644. doi:10.1016/j.commatsci.2003.08.031

[27] N. Benseddiq y A. Imad, Int. J. Press. Vessels Pip. 85 (2008) 219-227. doi:10.1016/j.ijpvp.2007.09.003

[28] A.G. Franklin, J. Iron Steel Inst. 207 (1969) 181-186.

[29] MSC.Marc, MSC Software Corporation, Volume A Theory and User Information 7 (2005) 152-154.

[30] I.I. Cuesta, Tesis Doctoral, Escuela Politécnica Superior, Universidad de Burgos, 2010.

[31] I.I. Cuesta, J.M. Alegre y R. Lacalle, Fat. Fract. Eng. Mater. Struct 33 (2010) 703-713.

Downloads

Published

2010-12-31

How to Cite

Cuesta, I. I., Alegre, J. M., & Barbáchano, H. (2010). Use of the Gurson-Tvergaard-Needleman (GTN) damage model to simulate small punch test on pre-cracked specimens. Revista De Metalurgia, 46(Extra), 53–63. https://doi.org/10.3989/revmetalmadrid.05XIIPMS

Issue

Section

Articles