Distribution behaviour of selenium, cobalt, molybdenum and cadmium in copper smelting process under dust recirculation

Authors

  • V. Montenegro Departament of Materials Science and Engineering, Graduate School of Enginnering, Nagoya University, Furo-cho
  • H. Sano Material Science and Engineering, Departament of Materials, Physics and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho
  • T. Fujisawa Material Science and Engineering, Departament of Materials, Physics and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho

DOI:

https://doi.org/10.3989/revmetalm.2008.v44.i3.116

Keywords:

Copper smelting, Minor elements, Selenium, Cobalt, Dust recirculation

Abstract


Usually dust generated from copper smelting in Chile contains high concentrations of copper and arsenic, but also other metals of considerable value and some environmental interest such as selenium, cobalt and molybdenum. It is desirable to understand the behavior of those elements when the smelting process operates with dust recirculation. In this study, the effect of dust recirculation to smelting process on the distribution among the matte, slag and gas phases were evaluated as a function of matte grade, amount of recirculated dust, oxygen enrichment and temperature. Experimental results show that selenium can be concentrated at high matte grade ranges and high oxygen enrichments in blowing gas. However, the result suggested that high recirculation amounts to smelting process are not feasible because it increases the minor metal losses.

Downloads

Download data is not yet available.

References

[1] H. Sano, V. Montenegro y T. Fujisawa, Proc. 6th Int. Copper-Cobre Conf., Volume VI, Sustainable Development, HS&E and Recycling, 2007, Toronto, Ontario, Canada, pp.141-149.

[2] J. Osorio, M. Mella. M. Maldini y M. Herrera, Proc. Hydroprocess, Arturo Prat University, Iquique, Chile, 2006, pp. 387-400.

[3] S. Mikhail, A. Webster y J. Laflamme, Can. Metall. Q. 28 (1989) 241-249.

[4] T. Kho, D. Swinbourne y T. Lehner, Metall. Trans. B 37 (2006) 209-214. doi:10.1007/BF02693150

[5] H. Henao, K. Yamaguchi Y S. Ueda, Proc. TMS The Minerals, Metals & Materials Society, 2006, San Diego (EEUU).

[6] M. Nagamori Y P. Chaubal, Metall. Trans. B 13 (1982) 331-338. doi:10.1007/BF02667748

[7] A. Yazawa, Proc. 28th Cong. IUPAC, Vancouver, 1981, pp. 1-21.

[8] C. Gonzalez, R. Parra, A. Klenovcanova, I. IMRIS Y M. SANCHE, Scand. J. Metall. 34 (2005) 143-149. doi:10.1111/j.1600-0692.2005.00740.x

[9] A. Yazawa, Can. Metall. Q. 8 (1970) 257-261.

[10] A. Westland y A. Webster, Can. Metall. Q. 29 (1990) 217-225.

[11] N. Choi y W. Cho, Metall. Trans. B 28 (1997) 429-438. doi:10.1007/s11663-997-0109-0

[12] P.J. Mackey, Can. Metall. Q. 21 (1982) 221- 260.

[13] K. Itagaki, M. Hino, A. Zakeri y D. Mendoza, Copper 2003, Vol. 4, Pyrometallurgy of Copper, Ed. C. Diaz, C. Landolt and T. Utigart, Santiago-Chile 2003, pp. 427-436.

[14] H. Mendoza, A. Luraschi, G. Riveros y M. Cerna, Copper 95, Vol. 4, Pyrometallurgy of Copper, Ed. W.J. Chen, C. Diaz, A. Luraschi and P.J. Mackey (Canadian Institute of Mining, Metallurgy and Petroleum), Quebec, 1995, pp. 281-299.

[15] Y. Kawai Y y. Shiraishi, Handbook of Physicochemical Properties at High Temperatures, The Iron and Steel Institute of Japan, 1988, pp. 73-91.

Downloads

Published

2008-06-30

How to Cite

Montenegro, V., Sano, H., & Fujisawa, T. (2008). Distribution behaviour of selenium, cobalt, molybdenum and cadmium in copper smelting process under dust recirculation. Revista De Metalurgia, 44(3), 273–279. https://doi.org/10.3989/revmetalm.2008.v44.i3.116

Issue

Section

Articles