Oxidation behaviour at 1123 K of AISI 304-Ni/Al-Al2O3/TiO2 multilayer system deposited by flame spray

Authors

  • K. A. Habib Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I
  • J. J. Saura Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I
  • C. Ferrer Departamento de Ing. Mecánica y de Materiales, UPV
  • M. S. Damra Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I
  • I. Cervera Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I

DOI:

https://doi.org/10.3989/revmetalmadrid.1003

Keywords:

AISI 304, Coupling layer Ni-Al, Alumina-titania layers, Flame spray, High temperature oxidation

Abstract


The oxidation behaviour of alumina/titania (97/3, 87/13 and 60/40) ceramic coatings using a Ni-Al coupling layer was studied in a thermobalance. Both layers were deposited on an AISI 304 stainless steel base metal by the flame spray technique. The coated steel was heated from room temperature to 1,123 K at 40 K min –1, oxidized in air for 50 h, and then cooled to room temperature at 40 K min–1. The mass gain was mainly attributed to the oxidation of Ni-Al coupling layer. Kinetic laws, DW·S –1 (mg.mm–2) vs. time (hours) were close to a parabolic plot for each sample. Surface composition of ceramic top layer and the cross section of multilayer system were analysed using a wide range of experimental techniques including Scanning Electron Microscopy (SEM), equipped with a link energy dispersive X-Ray spectroscopy (EDX) and X-Ray diffraction (XRD) before and after the oxidation process. Coatings 97/3 and 87/13 presented a stable structure after flame spray deposition and they did not evolve with the oxidation process, while most of the 60/40 coating changed to a metastable structure after deposition and to a more stable structure after oxidation with high micro-cracks content. SEM and EDX microanalysis of the cross-sections showed that significant oxidation and a weak intergranular precipitation had been produced in the coupling layer and on the stainless steel base metal, respectively.

Downloads

Download data is not yet available.

References

[1] K. K. de Groh, D.C. Smith, D.R. Wheeler and B.J. MacLachlan, NASA/TM-1998-208813, p. 1-10.

[2] Y. Wang, S. Jiang, M. Wang, S. Wang, T.D. Xiao, and P.R. Strutt, Wear 237 (2000) 176-185. doi:10.1016/S0043-1648(99)00323-3

[3] J.H. Bulloch and A.G. Callagy, Wear 233-235 (1999) 204-292. doi:10.1016/S0043-1648(99)00229-X

[4] A. Tucci and L. Esposito, Wear 162-164 (1993) 925-929. doi:10.1016/0043-1648(93)90096-5

[5] A. Kulkarni, S. Sampath, A. Goland and H. Herman, Scripta Mater. 43 (2000) 471-476. doi:10.1016/S1359-6462(00)00416-4

[6] D.E. Crawmer, Handbook of Thermal Spray Technology, Ed. ASM International, Ohio, EE.UU. 2004, pp. 55-76.

[7] Y. Liu, T. E. Fischer and A. Dent, Surf. Coat. Tech. 167 (2003) 68-76. doi:10.1016/S0257-8972(02)00890-3

[8] L. GAL-OR, I. Silberman and R. Chaim, J. Electrochem. Soc. 138 (1991) 1939-1941.

[9] R. Chaim, I. Silberman and L. GAL-OR, J. Electrochem. Soc. 138 (1991) 1942-1944. doi:10.1149/1.2085905

[10] R. Chaim, G. Stark and L. Gal-Or, J. Mater. Sci. Lett. 13 (1994) 487-490. doi:10.1007/BF00540175

[11] V.K. Tolpygo and D.R. Clarke, Surf. Coat. Tech. 120-121 (1999) 1-7. doi:10.1016/S0257-8972(99)00331-X

[12] F.H. Sttot, G.C. Wood and J. Stringer, Oxid. Met. 8 (1995) 113-145. doi:10.1007/BF01046725

[13] R. Zieris, S. Nowotny, L.M. Berger, L. Haubold and E. Beyer, International Thermal Spray Conference: Advancing the Science and Applying the Technology, ASM International, Orlando, EE.UU. 2003, pp. 567-577.

[14] R.S. Lima, A. Kuckuk, U. Senturk and C.C. Berndt, J. Therm. Spray Techn. 10 (2001) 179-185.

[15] R.S. Lima and B.R. Marple, 1st ASM International Surface Engineering Conference and the 13th IFHTSE Congress, ASM International, Columbus, OH, EE.UU., 2002, pp. 495-503.

[16] L. Dubourg, R.S. Lima and C. Moreau, Surf. Coat. Tech. 201 (2007) 6278-6284. doi:10.1016/j.surfcoat.2006.11.026

[17] R. Kossowsky and S. Singhal, Editors, Surface Engineering, Series E: Applied Science, Nº 85, 1984, pp. 370-389.

[18] J.A. Nesbitt, N. S. Jacobson and R.A. Miller, Surface Modification Engineering II, chapter 2, CRC Press, Inc., Florida, 1988, pp. 26-38.

[19] G.C. Wood, Corr. Sci. 2 (1962) 173-196. doi:10.1016/0010-938X(62)90019-7

[20] N. Hussain, K.A. Shahid, I.H. Khan and S. Rahman, Oxid. Met. 41 (1994) 215-226. doi:10.1007/BF01080783

[21] Z. Kubes, J. Veselà, Z. Weiss, J. Mater. Sci.14 (1995) 876-877.

[22] I. Saeki, H. Konno, R. Furuichi, T. Nakamura, K. Ma buchi and M. Itoh, Corros. Sci. 40 (1998) 191-200. doi:10.1016/S0010-938X(97)00113-3

[23] J. Botella, C. Merino and E. Otero, Oxid. Met. 49 (1998) 297-324. doi:10.1023/A:1018830424480

[24] R. Guillamet, J. Lopitoux, B. Hannoyer and M. Lenglet, Journ. Physique, 3 (1993) 349-356.

[25] J.E. Croll and G.R. Wallwork, Oxid. Met. 1 (1969) 55-71. doi:10.1007/BF00609924

[26] N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel and H. Buscail, Appl. Surf. Sci. 254 (2008) 2292-2299. doi:10.1016/j.apsusc.2007.09.018

[27] P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K.P. Sreekumar, R.U. Satpute, N. Venkatramani and K. Ramachandran, Surf. Coat. Tech. 168, 2-3 (2003) 231-240.

[28] M. Wang and L.L. Shaw, Surf. Coat. Tech. 202 (2007) 34-44. doi:10.1016/j.surfcoat.2007.04.057

[29] K.H. Habib, J.J. Saura, C. Ferrer, M.S. Damra, E. Gimenez and L. Cabedo, Surf. Coat. Tech. 201 (2006) 1436-1443. doi:10.1016/j.surfcoat.2006.02.011

[30] F.J. Pérez, M.P. Hierro, F. Pedraza, M.C. Carpintero, C. Gómez and R. Tarin, Surf. Coat. Tech. 145 (2001) 1-7. doi:10.1016/S0257-8972(01)01019-2

[31] W.J. Quadakkers, D. Naumenco, E. Wessel, V. Kochubey and L. Singheiser, Oxid. Met. 61 (2004) 17-37. doi:10.1023/B:OXID.0000016274.78642.ae

[32] M. Kobayashi, T. Meguro, K. Komeya, T. Yokoyama, J. Funahashi, T. Kameda, J. Mater. Sci. 35 (2000) 4129-4136. doi:10.1023/A:1004854825701

[33] B. Davidov, A. Deas, O. Zagrebelny and V. Komarov, Oxygen Cell Assessment for Diving Rebreather Applications: Sourcing. Performance, Safety and Reliability. Deep Life Ltd. 2009, pp. 1-136.

[34] D. Wang, Z. Tian, L. Shen, Z. Liu and Y. Huang, Surf. Coat. Tech. 203 (2009) 1298-1303. doi:10.1016/j.surfcoat.2008.10.027

[35] L. Dubourg, R.S. Lima and C. Moreau, Surf. Coat. Tech. 201(2007) 6278-6284. doi:10.1016/j.surfcoat.2006.11.026

[36] R. Tomaszek, L. Pawlowski, J. Zdanowski, J. Grimblot and J. Laureyns, Surf. Coat. Tech. 185 (2004) 137-149. doi:10.1016/j.surfcoat.2004.01.010

Downloads

Published

2011-04-30

How to Cite

Habib, K. A., Saura, J. J., Ferrer, C., Damra, M. S., & Cervera, I. (2011). Oxidation behaviour at 1123 K of AISI 304-Ni/Al-Al2O3/TiO2 multilayer system deposited by flame spray. Revista De Metalurgia, 47(2), 126–137. https://doi.org/10.3989/revmetalmadrid.1003

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>