Corrosion behaviour and in vitro/in vivo biocompatibility of surface-modified AZ31 alloy

Authors

  • M. Carboneras Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC)
  • C. Iglesias Hospital La Paz
  • B. T. Pérez-Maceda Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC)
  • J. A. del Valle Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC)
  • M. C. García-Alonso Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC)
  • M. A. Alobera Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC)
  • C. Clemente Facultad de Medicina, Universidad de Alcalá de Henares (UAH)
  • J. C. Rubio Hospital La Paz
  • M. L. Escudero Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC)
  • R. M. Lozano Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC)

DOI:

https://doi.org/10.3989/revmetalm.1065

Keywords:

AZ31, Magnesium fluoride, Corrosion, Biocompatibility, In vitro/in vivo

Abstract


The present work evaluates the corrosion behaviour and the in vitro/in vivo biocompatibility of the AZ31 magnesium alloy, which fulfills the mechanical requirements of bone. The corrosion kinetic of as-received AZ31 alloy was not compatible with the cell growth. To improve its performance, the AZ31 alloy was surface modified by a chemical conversion treatment in hydrofluoric acid. The magnesium fluoride layer generated by the surface treatment of AZ31 alloy enhances its corrosion behaviour, allowing the in vitro growth of osteoblastic cells over the surface and the in vivo formation of a highly compact layer of new bone tissue. These results lead to consider the magnesium fluoride coating as necessary for potential use of the AZ31 alloy as biodegradable and absorbable implant for bone repair.

Downloads

Download data is not yet available.

References

[1] T. Hanawa, Mater. Sci. Eng. C. 24 (2004) 745-752. http://dx.doi.org/10.1016/j.msec.2004.08.018

[2] M.P. Staiger, A.M. Pietak, J. Huadmai y G. Dias, Biomaterials 27 (9) (2006) 1.728-1.734.

[3] S.F. Yang, K.F. Leong, Z.H. Du y C.K. Chua, Tissue Eng. 7(6) (2001) 679-89. http://dx.doi.org/10.1089/107632701753337645 PMid:11749726

[4] Y. Al-Abdullat, S. Tsutsumi, N. Nakajima, M. Ohta, H. Kuwahara y K. Ikeuchi, Mater. Trans. 42 (2001) 1.777-1.780.

[5] R. Zeng, W. Dietzel, F. Witte, N. Hort y C. Blawert, Adv. Eng. Mater. 10 (2008) B03−B14.

[6] G.L. Song, Corros. Sci. 49 (2007) 1.696-1.701.

[7] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U.Kainer, R. Willumeit y F. Feyerabend, Curr. Opin. Solid State Mater. Sci. 12(5-6) (2008) 63-72. http://dx.doi.org/10.1016/j.cossms.2009.04.001

[8] M. Álvarez-López, M.D. Pereda, J.A. del Valle, M. Fernández-Lorenzo, M.C. García-Alonso, O.A. Ruano y ML Escudero, Acta Biomater. 6 (2010) 1.763-1.771.

[9] X. Gu, Y. Zheng, Y. Cheng, S. Zhong y T. Xi, Biomaterials 30 (2009) 484-498. http://dx.doi.org/10.1016/j.biomaterials.2008.10.021 PMid:19000636

[10] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg y C.J. Wirth, Biomaterials 26 (2005) 3.557-3.563.

[11] K. Chiu, M. Wong, F. Cheng y H. Man, Surf. Coat. Technol. 202 (2007) 590-598. http://dx.doi.org/10.1016/j.surfcoat.2007.06.035

[12] M. Carboneras, L.S. Hernández, J.A. del Valle, M.C. García-Alonso y M.L. Escudero, J. Alloys Comp. 496(1-2) (2010) 442-448.

[13] J. Gray y B. Luan, J. Alloys Comp. 336 (2002) 88-113.

[14] A. Doyle, J.B. Griffiths y D.G. Newell, Testing for Microbial contamination, in: A. Doyle, J.B. Griffiths, D.G. Newell, (Eds.), Cell & Tissue Culture: Laboratory Procedures, John Wiley & Sons Ltd, Vol I, West Sussex, England, 1995, pp. 7A:1.2.

[15] J.A. del Valle, F. Carreño y O.A. Ruano, Acta Mater. 54 (2006) 4.247-4.259.

[16] V. Caesel, P.-T. Tai, Fr.-W. Bach, H. Haferkamp, F. Witte y H. Windhagen, Proceedings of the Sixth International Conference on Magnesium Alloys and Their Applications, K.U. Kainer (Ed.), 2003, pp. 534-539.

[17] M. Carboneras, L.A. Hernández-Alvarado, Y.E. Mireles, L.S. Hernández, M.C. García- Alonso y M.L. Escudero, Rev. Metal. Madrid 46 (2010) 86-92.

[18] Z. Li, X. Gu, S. Lou e Y. Zheng, Biomaterials 29 (2008) 1.329-1.344.

Downloads

Published

2011-06-30

How to Cite

Carboneras, M., Iglesias, C., Pérez-Maceda, B. T., del Valle, J. A., García-Alonso, M. C., Alobera, M. A., Clemente, C., Rubio, J. C., Escudero, M. L., & Lozano, R. M. (2011). Corrosion behaviour and in vitro/in vivo biocompatibility of surface-modified AZ31 alloy. Revista De Metalurgia, 47(3), 212–223. https://doi.org/10.3989/revmetalm.1065

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>