High temperature corrosion of 9Cr-1Mo ferritic steel P91 modified, in oxidizing-carburizing atmospheres

Authors

  • D. Y. Peña-Ballesteros Grupo de Investigaciones en Corrosión (GIC), Universidad Industrial de Santander
  • C. Vásquez-Quintero Grupo de Investigaciones en Corrosión (GIC), Universidad Industrial de Santander
  • D. Laverde-Cataño Grupo de Investigaciones en Corrosión (GIC), Universidad Industrial de Santander
  • A. Serna G RWD

DOI:

https://doi.org/10.3989/revmetalm.1139

Keywords:

Oxidation, carburization simultaneous, 9Cr-1Mo modified steel, High temperature corrosion, Solid state diffusion

Abstract


High temperature corrosion in processing units of the chemical, petrochemical, and thermoelectric carbochemical is of high interest, due to the costs generated by sudden failures caused by deterioration in the mechanical properties of metals, being the carburization of the metallic matrix the most important corrosion mechanism resulting in loss of ductility and creep resistance. In this research a 9Cr-1Mo modified steel P91 was exposed to simulated atmospheres oxidant-fuel gas mixtures simultaneous in equilibrium of CO, CO2, CH4, H2O and H2, similar to those produced in the refining industry, at temperatures between 550 and 750 ºC. The microstructural evolution of the metal matrix was analyzed, also the growth, evolution and behavior of oxide layers and carburized, establishing the mechanism of deterioration of the material and the extent of damage for times exceeding 700 h of exposure.

Downloads

Download data is not yet available.

References

[1] R. Viswanathan, W.T. Bakker y J.D. Parker, Advances in Material Technology for Fossil Power Plants, Ed. Maney Materials Science, Londres, Inglaterra, 2001, pp.187-196.

[2] M. Thiele, H. Teichmann, W. Schwarz y W.J. Quadakkers, VGB Kraftwerkstech 77 (1997) 129-134.

[3] M. Thiele, H. Teichmann, W. Schwarz y W.J. Quadakkers, VGB Kraftwerkstech 2 (1997) 129.

[4] K. Zabelt, B. Melzer y A. Reuter, Proceedings Korrosion in Kraftwerken, Vol. 11, Wurzburgo, Alemania, 1999, pp. 99–111.

[5] J. Y. Liu y S. C. Chang, Corros. Sci. 39 (1997) 1021-1035. http://dx.doi.org/10.1016/S0010-938X(96)00083-2

[6] W.J. Quadakkers, M. Thiele, P.J. Ennis, H. Teichmann y W. Schwarz, Proceedings EUROCORR 97, Vol. 2, Trondheim, Norway, 1997, P.S. Jackman y L.M. Smith (Eds.), Londres, Inglaterra, 1999, pp. 35-40.

[7] I. Wolf, H.J. Grabke y D. Schmidt, Oxid. Met. 29 (1988) 289-306. http://dx.doi.org/10.1007/BF00751801

[8] A. Rahmel y J. Tobolski, Corros. Sci. 5 (1965) 333-346. http://dx.doi.org/10.1016/S0010-938X(65)90500-7

[9] S. Ling, T.A. Ramanarayanan y R. Petrovic-Luton, Oxid. Met. 40 (1993) 179-196. http://dx.doi.org/10.1007/BF00665264

[10] P. Kofstad, Proc. High Temperature Corrosion, Ed. Elsevier Applied Science Publishers Ltd, Londres, Inglaterra, 1988, pp. 246-546.

[11] A.S. Khanna, P. Rodriguez y J.B. Gnanamoorthy, Oxid. Met. 26 (1986) 171-200. http://dx.doi.org/10.1007/BF00659183

[12] C. T. Fujii y R. A. Meussner, J. Electrochem. Soc. 110 (1963) 1195-1204. http://dx.doi.org/10.1149/1.2425624

[13] R.A. Perkins, Proc. High Temperature Corrosion, Vol. 6, R.A. Rapp (Ed.), NACE, Houston, EE.UU., 1983, p. 345.

[14] P. Ganesan, G.D. Smith y C.S. Tassen, Proc.Corrosion/95, Paper 470, NACE, Houston, EE.UU.,1995.

[15] T. Sasaki, K. Kobayashi, T. Yamaura, T. Kasuya y T. Masuda, Kurashiki 25 (1991) 78-87.

[16] R. Viswanathan, M. Berasi, J. Tanzosh y T. Thaxton, Proc. P.V.P., Vol. 201, Nashville, Tennessee, M. Prager y C. Cantzler (Eds), ASME, New York, EE.UU., 1990, pp. 97- 104.

[17] M. J. Bennett y J.B. Price, J. Mater. Sci. 16 (1981) 170-188. http://dx.doi.org/10.1007/BF00552071

[18] R.W Swindeman, V.K Sikka, P.J Maziasz y D. A Canonico, Proc. P.V.P., Vol. 374, San Diego, California, 1998, H.S. Mehta, W.H. Bamford et al. (Eds), ASME, New York, EE.UU., 1998, pp. 305-312.

[19] D.C. Agarwal, U. Brill y Klöwer, Proc. Corrosion/95, Paper 471, NACE, Houston, EE.UU., 1995, p. 8.

[20] H. J. Grabke y I. Wolf, Mat. Sci. Eng. 87 (1987) 23-33. http://dx.doi.org/10.1016/0025-5416(87)90357-0

[21] H.J. Grabke y D.B. Meadowcroft, Guidelines for Methods of Testing and Research in High Temperature Corrosion, European Federation of Corrosion Publications, Londres, Inglaterra, 1995, pp. 11-36.

Downloads

Published

2012-04-30

How to Cite

Peña-Ballesteros, D. Y., Vásquez-Quintero, C., Laverde-Cataño, D., & Serna G, A. (2012). High temperature corrosion of 9Cr-1Mo ferritic steel P91 modified, in oxidizing-carburizing atmospheres. Revista De Metalurgia, 48(2), 97–106. https://doi.org/10.3989/revmetalm.1139

Issue

Section

Articles