Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems

Authors

  • G. Pimentel Materalia Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • C. Capdevila Materalia Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • M. J. Bartolomé Materalia Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • J. Chao Materalia Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • M. Serrano División de Materiales Estructurales, Centro de Investigaciones Energéticas, Mediambientales y Tecnológicas (CIEMAT)
  • A. García-Junceda División de Materiales Estructurales, Centro de Investigaciones Energéticas, Mediambientales y Tecnológicas (CIEMAT)
  • M. Campos Universidad Carlos III de Madrid (UC3M)
  • J. M. Torralba Universidad Carlos III de Madrid (UC3M)
  • J. Aldazábal Centro de Estudios e Investigaciones Técnicas de Guipúzcoa (CEIT – Tecnun), Universidad de Navarra

DOI:

https://doi.org/10.3989/revmetalm.1165

Keywords:

ODS alloy, Ferritic stainless steel, Oxides, Biomass, Recrystallization

Abstract


Technologies and means for developing biomass plant with higher energy conversion efficiencies are essential in order to implement the commitment to renewable biomass energy generation. Advanced, indirect Combined Cycle Gas Turbine (CCGT) systems offer overall biomass energy conversion efficiencies of 45 % and above, compared with the 35 % efficiency of conventional biomass steam plant. However to attain this efficiency in CCGT operation it will be necessary to develop a heat exchanger capable of gas operating temperatures and pressures of around 1100 °C and 15-30 bar, respectively, for entry heating the gas turbine working fluid. ODS ferritic steels is the kind of advance material to deal with this challenge, however work to optimize the coarse grain microstructure to improve creep hoop strength needs to be done. In this sense, this paper reports the recrystallisation behaviour of PM 2000 oxide dispersion strengthened ferritic alloy which was cold deformed after hot-rolling and extrusion. The results can be interpreted if it is assumed that anything which makes the microstructure heterogeneous, stimulates recrystallisation. In this sense, larger strain gradients lead to more refined and more isotropic grain structures. The combination of these results with finite element modeling are used to interpret the role of residual shear stresses on the development of recrystallized grain structure.

Downloads

Download data is not yet available.

References

[1] D. J. Gooch: in Proc. 5th International Charles Parsons Turbine Conference, Institute of Materials, London, England, 2000, p. 201.

[2] T. Leino, J. Kärki, P. Vainikka, M. Orjala, L. Díez, C. Cortés, H. van Putten, D. Bosma, A. Tortosa-Masia, A. Otter, F. Klemm, S. Mabbutt, N. Simms, J. Oakey, E. Kakaras, N. Koukouzas, P. Grammelis, D. Chua, I. Rampidis and A. Anttila, Development of advanced monitoring methods to improve boiler availability and performance, Report EUR22994EN, Directorate- General for Research, European Union, Luxembourg, 2008, p. 4.

[3] D. Sporer and K. Lempenauer, in Proc. 13th International Plansee Seminar, Bildstein-Eck, Reutte, Austria,1993, p. 796.

[4] F. Starr, A. R. White and B. Kazimierza, in Proc. Materials Advanced Power Engineering, D. Coutsouradis, E. Bachelet, R. Brnetaud, P. Esslinger, J. Ewald, I. Kvernes, Y. Lindblom, D. B. Meadowcroft, V. Regis, R.B. Scarlin, K. Schneider and R. Singer (eds), Kluwer Academic Publishers, The Netherlands, 1994, p. 1393.

[5] F. G. Wilson, B. R. Knott and C. D. Desforges, Metall. Trans., 9A (1978) 275-287.

[6] M. M. Baloch, PhD Thesis, University of Cambridge, Cambridge, 1989, p. 91.

[7] D. M. Jaeger and A. R. Jones, in: Proc. Materials Advanced Power Engineering, D. Coutsouradis, E. Bachelet, R. Brnetaud, P. Esslinger, J. Ewald, I. Kvernes, Y. Lindblom, D. B. Meadowcroft, V. Regis, R.B. Scarlin, K. Schneider, R. Singer (eds), Kluwer Academic Publishers, The Netherlands, 1994, p.1507.

[8] D. M. Jaeger and A. R. Jones, in: Proc. Materials Advanced Power Engineering, D. Coutsouradis, E. Bachelet, R. Brnetaud, P. Esslinger, J. Ewald, I. Kvernes, Y. Lindblom, D. B. Meadowcroft, V. Regis, R.B. Scarlin, K. Schneider and R. Singer (eds), Kluwer Academic Publishers, The Netherlands, 1994, p. 1515.

[9] T. S. Chou, H. K. D. H. Bhadeshia, G. McColvin and I. C. Elliot, in Proc. 2nd International Conference on Structural Applications of Mechanical Alloying, ASM, Ohio, 1993, p. 77.

[10] T. S. Chou and H. K. D. H. Bhadeshia, Metall. Trans., 24A (1993) 773-779.

[11] T. S. Chou and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 9 (1993) 890-897.

[12] J.L. Gonzalez-Carrasco, J. Chao, C. Capdevila, J.A. Jimenez, V. Amigo and M.D. Salvador, Mat. Sci. Eng. A, 471 (2007) 120-126. http://dx.doi.org/10.1016/j.msea.2007.03.012

[13] J. Chao, C. Capdevila and J.L. González- Carrasco, Mat. Sci. Eng. A, 515 (2009) 190-195. http://dx.doi.org/10.1016/j.msea.2009.03.017

[14] M. Klimiankou, R. Lindau, A. Moslang and J. Schroder, Powder Metall., 48 (2005) 277-287. http://dx.doi.org/10.1179/174329005X64171

[15] M. Klimiankou, R. Lindau and A. Möslang, Journal of Crystal Growth, 249 (2003) 381-388. http://dx.doi.org/10.1016/S0022-0248(02)02134-6

[16] J. S. Benjamin and P. S. Gilman, Metals Handbook, 9th edn., Vol. 7, ASM International, Ohio, 1983, p. 722.

[17] G. H. Gessinger, Powder Metallurgy of Superalloys, Butterworth, London, England, 1984, p. 356.

[18] G. A. J. Hack, Powder Metall., 27 (1984) 73-79.

[19] C. Capdevila, Y. L. Chen, N. C. K. Lassen, A. R. Jones and H. Bhadeshia, Mater. Sci. Technol., 17 (2001) 693-699.

[20] C. Capdevila, Y. L. Chen, A. R. Jones and H. Bhadeshia, ISI J. Int., 43 (2003) 777-783. http://dx.doi.org/10.2355/isijinternational.43.777

[21] C. C. Montes and H. Bhadeshia, Adv. Eng. Mater., 5 (2003) 232-241. http://dx.doi.org/10.1002/adem.200300322

[22] U. Miller, P. Brondsted, A.R. Jones, A. Fleming, H. Jelenak and H.K.D.H. Bhadeshia, Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant (Graintwist), BRITE-EURAM III, BE 97-4949, European Union, Brussels, 2002, p. 148.

[23] H.K.D.H. Bhadeshia, Mat. Sci. Eng., A 223 (1997) 64-77. http://dx.doi.org/10.1016/S0921-5093(96)10507-4

[24] J. Nutting, S. Ubhi and T.A. Hughes., in Proc. Int. Conf. on Oxide Dispersion Strengthened Superalloys by Mechanical Alloying, J.S. Benjamin (Ed), IncoMAP, 1981, p. 33.

[25] C. Capdevila and H.K.D.H. Bhadeshia, Adv. Eng. Mater., 3 (2001) 647-656. http://dx.doi.org/10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4

[26] I. Toda-Caraballo, J. Chao, L. E. Lindgren and C. Capdevila, Scr. Mater., 62 (2010) 41-44. http://dx.doi.org/10.1016/j.scriptamat.2009.09.023

[27] B. Hutchinson and B. Wynne, Mater. Sci. Forum, 550 (2007) 149-157. http://dx.doi.org/10.4028/www.scientific.net/MSF.550.149

Downloads

Published

2012-08-30

How to Cite

Pimentel, G., Capdevila, C., Bartolomé, M. J., Chao, J., Serrano, M., García-Junceda, A., Campos, M., Torralba, J. M., & Aldazábal, J. (2012). Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems. Revista De Metalurgia, 48(4), 303–316. https://doi.org/10.3989/revmetalm.1165

Issue

Section

Reviews

Most read articles by the same author(s)

1 2 3 4 > >>