Microbiologically influenced corrosion evaluation on brass (UNS C68700, UNS C443) and AISI 316 stainless steel

Authors

  • Mauricio Ohanian Grupo de Ingeniería Electroquímica, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República
  • Verónica Díaz Grupo de Ingeniería Electroquímica, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República
  • Mariana Corengia Grupo de Ingeniería Electroquímica, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República
  • Paola Russi Grupo de Ingeniería Electroquímica, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República
  • María Julia Pianzzola Departamento de Biociencias, Facultad de Química y Unidad Asociada de Facultad de Ciencias, Universidad de la República
  • Rodolfo Javier Menes Departamento de Biociencias, Facultad de Química y Unidad Asociada de Facultad de Ciencias, Universidad de la República

DOI:

https://doi.org/10.3989/revmetalm.014

Keywords:

AISI 316, Admiralty brass, Aluminum brass, Electrochemical techniques, MIC, Sulfate reducing bacteria

Abstract


Microorganisms may play an important role in the corrosion process and generate conditions which affect the rate and/or the mechanism of deterioration. They become visible by the formation of biofilms: clusters of microorganisms and extracellular polymers. These biofilms affect not only the durability of the material, but also reduce the heat transfer. The present work studied the growth of aerobic and anaerobic heterotrophic microorganisms and sulfate reducing bacteria on aluminum brass (UNS C68700), admiralty brass (UNS C443) and stainless steel AISI 316 in exposure experiments held in the Bay of Montevideo (Uruguay). The influence of the biofilm growth on the corrosion behavior was studied by electrochemical techniques: polarization curves and Electrochemical Impedance Spectroscopy (EIS). The selection of the most suitable material for the exposure conditions is discussed and hypotheses of the corrosion mechanism are presented. Although stainless steel AISI 316 presented the lowest corrosion rate it showed localized deterioration.

Downloads

Download data is not yet available.

References

Armstrong, R.D. (1986). Impedance plane display for an electrode with diffusion restricted to a thin layer. J. Electroanal. Chem. 198 (1), 177–180. http://dx.doi.org/10.1016/0022-0728(86)90034-3

ASTM Standard G3-13 (2013). Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. ASTM International, Philadelphia, 2013.

Cottis, R.A. (2010). Electrochemical Methods, en: Cottis, R.A., Graham, M.J., Lindsay, R., Lyon, S.B., Richardson, J.A., Scantlebury, J.D., Stott, H. (Eds). Shreir's Corrosion. Elsevier B.V., Amsterdam, pp. 1341–1373.

Cristiani, P. (2005). Solutions to fouling in power station condensers. Appl. Therm. Eng. 25 (16), 2630–2640. http://dx.doi.org/10.1016/j.applthermaleng.2004.11.029

de Romero, M.F., Duque, Z., de Rinc.n, O.T., P.rez, O. Araujo, I. (2003). Estudio de la teor.a de despolarización catádica con permeación de hidrógeno y la bacteria Desulfovibrio desulfuricans. Rev. Metal. 39 (Extra), 182–187.

Faires, V.M., Simmang, C.M. (1982). Termodin.mica. Ed. UTEHA., 6. Edición, México, pp. 234–261.

Gómez de Saravia, S.G., Guiamet, P.S., Videla, H.A. (2003). Prevención y protección de los efectos de la biocorrosión y el biofouling con mínimo impacto ambiental. Rev. Metal. 39 (Extra), 49–54. http://dx.doi.org/10.3989/revmetalm.2003.v39.iExtra.1096

IMM Servicio Laboratorio de Calidad Ambiental, (2011). Estudio de la calidad de agua, sedimento y biota del Río de la Plata. Evaluación de línea de base. Informe Anual -2011.

Javaherdashti, R. (2008). Microbiologically Influenced Corrosion: An Engineering Insight. Springer-Verlag, London, pp. 29–66.

Kosec, T., Merl, D.K. Milosev, I. (2008). Impedance and XPS study of benzotriazole films formed on copper, copperzinc alloys and zinc in chloride solution. Corros. Sci. 50 (7),1987–1997. http://dx.doi.org/10.1016/j.corsci.2008.04.016

Lasia, A. (1999). Electrochemical Impedance Spectroscopy andIts Applications, Modern Aspects of Electrochemistry, Vol. 32, Conway, B.E., Bockris, J., White, R. (Eds). Kluwer Academic/Plenum Publishers, New York, pp. 143–248.

Little, B.J., Lee, J.S. (2007). Microbiologically Influenced Corrosion. Wiley-Interscience, Hoboken, New Jersey, USA, pp. 1–22. http://dx.doi.org/10.1002/9780470112458.ch1

Little, B. J., Wagner P. (1997). Myths Related to microbiologically Influenced Corrosion. Mater. Performance 36 (6), pp. 40–44.

Liu, H., Xu, L. Zeng, J. (2000). Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel. Brit. Corros. J. 35 (2), 131–135. http://dx.doi.org/10.1179/000705900101501155

Ohanian, M., D.az, V., Corengia, M., Zinola, C.F. (2011). Estudio de corrosión galvánica en pares latón/acero inoxidable y latón/fundición de hierro. Rev. Metal. 47 (4), 319–328. http://dx.doi.org/10.3989/revmetalm.1047

Orazem, M.E., Tribollet, B. (2008a). Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, New Jersey, USA, pp. 61–72. http://dx.doi.org/10.1002/9780470381588.ch4

Orazem, M.E., Tribollet, B. (2008b). Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, New Jersey, USA, pp. 183–210. http://dx.doi.org/10.1002/9780470381588.ch11

Oya San, N., Nazir, H., D.nmez, G. (2012). Evaluation of microbiologically influenced corrosion inhibition on Ni-Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corros. Sci. 65, 113–118. http://dx.doi.org/10.1016/j.corsci.2012.08.009

Polo, J.L., Bastidas, J.M. (2000). Líneas de transmisión: su utilización en la interpretación de las medidas de impedancia en los estudios de corrosión. Rev. Metal. 36, 357–365. http://dx.doi.org/10.3989/revmetalm.2000.v36.i5.586

Roberge, P.R. (1999). Handbook of Corrosion Engineering. McGraw Hill, New York, USA, pp. 1072–1074.

Russi, P., Pianzzola, M.J., Menes, J., Corengia, M., Diaz, V., Ohanian, M. (2012). Influencia microbiológica sobre la corrosión: ensayos sobre materiales de interés tecnológico realizados en la Bahía de Montevideo. V Encuentro Regional y XXVI Congreso Interamericano de Ing. Química, Montevideo, Uruguay.

Starosvetsky, J., Starosvetsky, D., Pakroy, B., Hilel, T., Armon, R. (2008). Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corros. Sci. 50 (2), 540–547. http://dx.doi.org/10.1016/j.corsci.2007.07.008

Stott, J.F.D. (1993). What progress in the understanding of microbially induced corrosion has been made in the last 25 years? A personal viewpoint. Corros. Sci. 35 (1–4), 667–673. http://dx.doi.org/10.1016/0010-938X(93)90202-R

Stott, J.F.D. (2010). Corrosion in Microbial Environments, en: Cottis, R.A., Graham, M.J., Lindsay, R., Lyon, S.B., Richardson, J.A., Scantlebury, J.D., Stott, H. (Eds). Shreir's Corrosion. Elsevier B.V., Amsterdam, pp. 1169–1190.

Stott J., Skerry B., King R. (1988). Laboratory Evaluation of Materials for Resistance to Anaerobic Corrosion by Sulfate-Reducing Bacteria: Philosophy and Practical Design, en Francis, P.E, Lee, T.S. (Eds.). The Use of Synthetic Environments for Corrosion Testing, ASTM STP 970, American Society for Testing and Materials, Philadelphia, pp. 98–111.

Tanner, R.S. (1989). Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods 10 (2), 83–90. http://dx.doi.org/10.1016/0167-7012(89)90004-3

Videla, H.A. (1996). Manual of Biocorrosion, CRC Press, Boca Raton, FL, p. 241.

Videla, H.A., Salvarezza, R.C. (1984). Introducción a la Corrosión Microbiológica. Librer.a Agropecuaria, Buenos Aires, p. 83.

Published

2014-06-30

How to Cite

Ohanian, M., Díaz, V., Corengia, M., Russi, P., Pianzzola, M. J., & Menes, R. J. (2014). Microbiologically influenced corrosion evaluation on brass (UNS C68700, UNS C443) and AISI 316 stainless steel. Revista De Metalurgia, 50(2), e014. https://doi.org/10.3989/revmetalm.014

Issue

Section

Articles