Prediction of hardness for Al-Cu-Zn alloys in as-cast and quenching conditions

Authors

  • José D. Villegas-Cárdenas Universidad Politécnica del Valle de México, Departamento de Ingeniería
  • Maribel L. Saucedo-Muñoz
  • Víctor M. López Hirata
  • Héctor J. Dorantes Rosales

DOI:

https://doi.org/10.3989/revmetalm.015

Keywords:

Al-Cu-Zn alloys, As-cast, Hardness assessment, Solution treated and quenched

Abstract


This work presents a new experimental and numerical methodology in order to predict the hardness in the as-cast, and solution treated and quenched Al-Cu-Zn alloys. Chemical composition of alloys is located inside two straight lines represented by two equations. Eight different compositions were selected from each line. All the alloys were characterized for light microscope, scanning electron microscope, X-ray diffraction and Rockwell B hardness test. The equilibrium phases were obtained at different temperatures by Thermo-Calc. The microstructure characterization and regression analysis enabled to determine the phase transformations and two equations of hardness assessment. The combination of hardness equations and composition line equations permitted to estimate the hardness of any alloy composition inside this zone. This was verified by calculating hardness with the information reported in other works, with an error lower than 7% in the estimated hardness.

Downloads

Download data is not yet available.

References

Aragón, J.A., Miranda, J.R., Hilerio, I., Muñoz, D., Hernández, R., Cort.s, V., Altamirano, A. (2007a). Compuestos de matriz metálica rica en Zn, con alto contenido de Al y componentes estructurales de compuestos intermetálicos de Cu-Zn y Cu-Al particulados. Rev. Mex. Fís. 53 (2), 105–113. http://rmf.smf.mx/pdf/rmf/53/2/53_2_105.pdf

Aragón, J.A., Miranda, J.R., Garc.a, A. (2007b). Obtención de una microestructura nueva en la aleación Zn -40% at. Al-1,5 % at. Cu. Rev. Mex. Fís. 53 (3), 149–158. http://rmf.smf.mx/pdf/rmf/53/3/53_3_149.pdf

Bai-quing, X. (1999). Present and development of spray forming technology. Chi. J. Ra. Met. 11 (6), 26–37.

Börnstein, L. (2005). Ternary Alloy System Phase Diagrams, Crystallographic and Thermodynamic Data, Ed. Springer, Vol. 1, 11, New York, USA, pp. 183–205.

Cáceres, C.H., Lescano, E.E. (1990). The growth of artificial voids during superplastic deformation of a Zn-Al-Cu alloy. Mater. Sci. Eng. A, 128 (2), 147–154. http://dx.doi.org/10.1016/0921-5093(90)90223-P

Cáceres, C.H., Silvetti, S.P. (1987). Cavitation damage in the superplastic Zn -22% Al–0.5% Cu alloy. Acta Metall. 35 (4), 897–906. http://dx.doi.org/10.1016/0001-6160(87)90168-4

Cenoz, E., Fernández, C. (2007). Influencia de la composición y el tratamiento térmico en las propiedades mecánicas de aleaciones de bronce al aluminio. Rev. Metal. 43 (4), 272–283.

Chang, S.C., Jahn, M.T., Wan, C.M., Lee, J.Y., Hsu, Y.T.K. (1976).The determination of tensile properties from hardness measurements for AI - Zn-Mg alloys. J. Mater. Sci. 11 (4), 623–630. http://dx.doi.org/10.1007/BF01209447

Ciach, R., Krol, J., Wegryn, K. (1969). Studies on four phases transformation in AlZn78 alloy containing 1–3 per cent of copper. Bulletin de L'Academie Polonaise des Sciences 17 (4), 371–378.

Effenberg, G. (2005). Ternary Alloys Systems, Part 2. Selected Systems form Al-Cu-Fe to Al-Fe-Ti, Ed. Springer, Vol. 1, New York, USA, pp. 329–358.

Gelfi, M., Bontempi, E., Pola, A., Roberti, R., Rollez, D., Depero, L.E. (2004). Microstructural and Mechanical Properties of Zinc Die Casting Alloys. Adv. Eng. Mater. 6 (10), 818–822. http://dx.doi.org/10.1002/adem.200400087

Ghosh, G., Humbeek, J.V. (1992). Ternary Alloys, Ed. VCH, 1, 5, New York, USA, pp. 92–112.

Malvano, M.L., Marantonio, M. (1911). Researches on the Constitution of Al. Gazz Chim. Ital. 41, 282–297.

Mondolfo, L.F. (1976). Metallography of aluminium Alloys. Ed. John Wiley & Son, Vol. 1, New York, USA, pp. 518–520.

Ramos, M., Martínez, E., Torres, G. (2012). Superplastic behavior of Zn–Al eutectoid alloy with 2 % Cu. J. Mater. Sci. 47 (17), 6206–6212. http://dx.doi.org/10.1007/s10853-012-6494-z

Sandoval A., Negrete J., Torres G. (2000). Influencia de las fases ? y ??´ en las propiedades mecánicas del zinalco V. Rev. Mex. Fis. 46, 361–372. http://rmf.smf.mx/pdf/rmf/46/4/46_4_361.pdf

Savas,kan, T., Murphy, S. (1983). Creep behaviour of Zn–Al–Cu alloys. Metallkd 74 (2), 76–82.

Savas,kan, T., Pürçek, G., Heikimogˇlu, P. (2003). Effect of copper on the mechanical and tribological properties of ZnAl27 based alloys. Tribol. Lett. 15 (3), 257–263.

Savas,kan, T., Heikimogˇlu, P., P.R.EK, G. (2004). Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys. Tribol. Int. 37 (1), 45–50.

Villars, P., Prince, A., Okamoto, H. (1997). Handbook of Ternary Alloy Phase Diagrams, Ed. ASM International, the Materials Society, New York, USA, 3416.

Villegas, J.D., L.pez, V.M., Ita, A., Saucedo, M.L. (2011). Assessment of hardness in As Cast and homogenized Zn-Al-Cu Alloys. Mater. Trans. 52 (8), 1581–1584. http://dx.doi.org/10.2320/matertrans.M2011084

Wu, M.W., Hwang, K.S., Huang, H.S. (2007). In-Situ Observations on the Fracture Mechanism of Diffusion-Alloyed Ni-Containing Powder Metal Steels and a Proposed Method for Tensile Strength Improvement. Metall. Mater. Trans. A 38 (7), 1598–1607. http://dx.doi.org/10.1007/s11661-007-9201-y

Zhu, Y.H. (2001). Phase transformations of eutectoid Zn-Al alloys. J. Mat. Sci. 36 (16), 3973–3980. http://dx.doi.org/10.1023/A:1017978407093

Published

2014-06-30

How to Cite

Villegas-Cárdenas, J. D., Saucedo-Muñoz, M. L., López Hirata, V. M., & Dorantes Rosales, H. J. (2014). Prediction of hardness for Al-Cu-Zn alloys in as-cast and quenching conditions. Revista De Metalurgia, 50(2), e015. https://doi.org/10.3989/revmetalm.015

Issue

Section

Articles

Most read articles by the same author(s)