Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy

Authors

  • José Carlos Sotelo Centro Tecnológico AIMEN, Planta de Tecnologías de Unión
  • Marcos González Centro Tecnológico AIMEN, Planta de Tecnologías de Unión
  • Enrique Porto Departamento de los Materiales e Ingeniería Metalúrgica. Escuela Técnica Superior de Ingenieros Industriales. Universidad de Vigo

DOI:

https://doi.org/10.3989/revmetalm.019

Keywords:

Hastelloy, Nickel, Brazing, Vacuum

Abstract


A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes.

Downloads

Download data is not yet available.

References

Brooks, C.R., Wang, Y.M. (1989). Effect on the microstructure of aging Hastelloy B2 from 550 to 850 °C for 1,200 hours. Metallogr. 23 (1), 57–86. http://dx.doi.org/10.1016/0026-0800(89)90040-2

Brooks, C.R., Wang, Y.M. (1990). Tensile properties and fractography of aged hastelloy B2 (550–850°C for up to 1200 h). Mater. Charact. 25 (2), 185–197. http://dx.doi.org/10.1016/1044-5803(90)90009-9

Cao, S., Brooks, C.R., Whittaker, G. (1994). The structure of the heat-affected zone in welds of a Ni-29 wt.% Mo commercial alloy (Hastelloy B2). Mater. Charact. 33 (1), 21–32. http://dx.doi.org/10.1016/1044-5803(94)90054-X

Davis, J.R. (2000). Nickel, Cobalt, and their alloys. ASM Specialty Handbook, USA.

Grushko, B., Weiss, B. (1984). Structure of Vacuum Brazed BNi-5 Joint of Inconel 718. Metall. Trans. A. 15 (4), 609–620. http://dx.doi.org/10.1007/BF02644192

Kim, Y.H., Kim, I.H., Kim, K.T., Sin, S.Y., Kwun, S.I. (2007). Identification of Phases in the Wide-Gap Region Brazed with BNi-3 Filler Metal Powder Using Electron Backscatter Diffraction. Mater. Sci. Forum 544–545, 355–358. http://dx.doi.org/10.4028/www.scientific.net/MSF.544-545.355

Rodríguez, G., García, I., Damborenea, J. (1998). Aleación superficial de superaleaciones base níquel mediante laser. Rev. Metal. 34 (2), 175–179. http://dx.doi.org/10.3989/revmetalm.1998.v34.i2.684

Roberts, P. (2003). Industrial Brazing Practice. CRC Press, UK. http://dx.doi.org/10.1201/9780203488577

Schwartz, M. (2003). Brazing. 2nd Edition. ASM International, USA.

UNE-EN ISO 17672 (2010). Soldeo fuerte, metales de aportación. AENOR, España.

Published

2014-09-30

How to Cite

Sotelo, J. C., González, M., & Porto, E. (2014). Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy. Revista De Metalurgia, 50(3), e019. https://doi.org/10.3989/revmetalm.019

Issue

Section

Articles