Characterization of Ni53.5-Fe19.5-Ga27 Ni53.5 ferromagnetic shape memory alloy produced by powder metallurgy

Authors

  • Luis Olmos Universidad Michoacana de San Nicolás de Hidalgo
  • Francisco Alvarado-Hernández Universidad Autónoma de Zacatecas
  • Omar Jiménez Universidad de Guadalajara
  • Héctor J. Vergara-Hernández Instituto Tecnológico de Morelia
  • Manuel Arroyo Albiter Universidad Michoacana de San Nicolás de Hidalgo
  • Raul A. Ochoa-Gamboa Centro de Investigación en Materiales Avanzados CIMAV

DOI:

https://doi.org/10.3989/revmetalm.040

Keywords:

Dilatometry, HTXRD, Milling, Particle size, Shape memory alloys, Sintering

Abstract


The main drawback of ferromagnetic shape memory alloys fabricated through casting methods are its brittleness. In order to overcome this disadvantage, powder metallurgy is an ideal technique for the consolidation of many engineering parts. This paper is focused on the study of the milling and sintering effects of metallic powders over the evolution of the crystalline phases responsibly for the shape memory effect of these materials. To achieve this objective, ferromagnetic shape memory alloy powders (Ni53.5-Fe19.5-Ga27) were prepared from a cast ingot by mechanical milling at two different times of 30 and 60 minutes. The evolution of the phases was investigated through high temperature X-ray diffraction (HTXRD), whereas sintering was analyzed with dilatometry tests. X-ray studies showed that four different phases can be present depending on the particle size and temperature at which the heat treatment was performed. Coarser powders showed a B2 structure along with a γ phase while the finer showed a L21 structure when treated below 1173 K. Furthermore, finer powders had a modulated M14 martensitic structure after sintering at temperatures above 1273 K. The sintering of powders was slow and a mass diffusion mechanism was not clearly observed.

Downloads

Download data is not yet available.

References

Amini, R., Mousavizad, S.M.M., Abdollahpour, H., Ghaffari, M., Alizadeh, M., Okyay Ali, K. (2013). Structural and microstructural phase evolution during mechano-synthesis of nanocrystalline/amorphous CuAlMn alloy powders. Adv. Powder Technol. 24, 1048–1053. http://dx.doi.org/10.1016/j.apt.2013.03.005

Gao, L., Cai, W., Liu, A.L., Zhao, L.C. (2006). Martensitic transformation and mechanical properties of polycrystalline Ni50Mn29Ga21-xGdx ferromagnetic shape memory alloys. J. Alloys Compd. 425, 314–317. http://dx.doi.org/10.1016/j.jallcom.2006.01.037

Gejima, F., Sutou, Y., Kainuma, R., Ishida, K. (1999). Magnetic Transformation of Ni2AlMn Heusler-Type Shape Memory Alloys. Metall. Mater. Trans. A 30, 2721–2723. http://dx.doi.org/10.1007/s11661-999-0312-5

Gong, S., Li, Z., Xu, G.Y., Liu, N., Zhao, Y.Y., Liang, S.Q. (2011). Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering– evaporation process. J. Alloys Compd. 509, 2924–2928. http://dx.doi.org/10.1016/j.jallcom.2010.11.157

Ito, K., Ito, W., Umetsu, R.Y., Karaman, I., Ishida, K., Kainuma, R. (2010). Mechanical and shape memory properties of Ni43Co7Mn39Sn11 alloy compacts fabricated by pressureless sintering. Scripta Mater. 63, 1236–1239. http://dx.doi.org/10.1016/j.scriptamat.2010.08.046

James, R.D., Wuttig, M. (1998). Magnetostriction of martensite. Philos. Mag. A 77, 1273–1299. http://dx.doi.org/10.1080/01418619808214252

Kakeshita, T., Takeuchi, T., Fukuda, T., Saburi, T., Oshima, R., Muto, S., Kishio, K. (2000). Magnetic field-induced martensitic transformation and giant magnetostriction in Fe-Ni-Co-Ti and ordered Fe3Pt shape memory alloys. Mater. T. JIM, 41 (8), 882–887. http://dx.doi.org/10.2320/matertrans1989.41.882

Morito, H., Fujita, A., Fukamichi, K., Kainuma, R., Ishida, K., Oikawa, K. (2002). Magnetocrystalline anisotropy in single- crystal Co-Ni-Al ferromagnetic shape-memory alloy. Appl. Phys. Lett. 81 (9), 1657–1659. http://dx.doi.org/10.1063/1.1503851

Müllner, P., Chernenko, V.A., Kostorz, G. (2004). Large cyclic magnetic-field-induced deformation in orthorhombic (14M) Ni-Mn-Ga martensite. J. Appl. Phys. 95, 1531–1536. http://dx.doi.org/10.1063/1.1639144

Oikawa, K., Wulff, L., Iijima, T., Gejima, F., Ohmori, T., Fujita, A., Fukamichi, K., Kainuma, R., Ishida, K. (2001). Promising ferromagnetic Ni-Co-Al shape memory alloy system. Appl. Phys. Lett. 79 (20), 3290–3292. http://dx.doi.org/10.1063/1.1418259

Oikawa, K., Ota, T., Gejima, F., Ohmori, T., Kainuma, R., Ishida, K. (2001). Phase Equilibria and Phase Transformations in New B2-type Ferromagnetic Shape Memory Alloys of Co-Ni-Ga and Co-Ni-Al Systems. Mater. Trans. 42 (11), 2472–2475. https://www.jim.or.jp/journal/e/pdf3/42/11/2472.pdf. http://dx.doi.org/10.2320/matertrans.42.2472

Olmos, L., Bouvard, D., Salvo, L., Bellet, D., Di Michiel, M. (2014). Characterization of the swelling during sintering of uniaxially pressed copper powders by in situ X-ray microtomography. J. Mater. Sci. 49, 4225–4235. http://dx.doi.org/10.1007/s10853-014-8117-3

Panigrahi, B.B., Godkhindi, M.M. (2006). Dilatometric sintering study of Ti–50Ni elemental powders. Intermetallics 14, 130–135. http://dx.doi.org/10.1016/j.intermet.2005.04.020

Portier, R.A., Ochin, P., Pasko, A., Monastyrsky, G.E., Gilchuk, A.V., Kolomytsev, V.I., Koval, Y.N. (2013). Spark plasma sintering of Cu–Al–Ni shape memory alloy. J. Alloys Compd. 577, S472–S477. http://dx.doi.org/10.1016/j.jallcom.2012.02.145

Radev, D.D. (2010). Mechanical synthesis of nanostructured titanium–nickel alloys. Adv. Powder Technol. 21, 477–482. http://dx.doi.org/10.1016/j.apt.2010.01.010

Söderberg, O., Brown, D., Aaltio, I., Oksanen, J., Syrén, J., Pulkkinen, H., Hannula, S.P. (2011). Microstructure and properties of Ni–Mn–Ga alloys produced by rapid solidification and pulsed electric current sintering. J. Alloys Compd. 509, 5981–5987. http://dx.doi.org/10.1016/j.jallcom.2011.02.166

Tian, X.H., Sui, J.H., Zhang, X., Feng, X., Cai W. (2011). Martensitic transformation, mechanical property and magnetic- field-induced strain of Ni-Mn-Ga alloy fabricated by spark plasma sintering. J. Alloys Compd. 509, 4081–4083. http://dx.doi.org/10.1016/j.jallcom.2011.01.001

Tian, X.H., Sui, J.H., Zhang, X., Zheng, X.H., Cai, W. (2012). Grain size effect on martensitic transformation, mechanical and magnetic properties of Ni-Mn-Ga alloy fabricated by spark plasma sintering. J. Alloys Compd. 514, 210–213. http://dx.doi.org/10.1016/j.jallcom.2011.11.077

Tsuchiya, K., Tsutsumi, A., Ohtsuka, H., Umemoto, M. (2004). Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements. Mater. Sci. Eng. A 378, 370–376. http://dx.doi.org/10.1016/j.msea.2003.11.076

Ullakko, K., Huang, J.K., Kanter, C., O'Handley, R.C., Kokorin, V.V. (1996). Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966–1968. http://dx.doi.org/10.1063/1.117637

Vajpai, S.K., Dube, R.K., Sangal, S. (2011). Microstructure and properties of Cu-Al-Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder preforms. Mater. Sci. Eng. A 529, 378–387. http://dx.doi.org/10.1016/j.msea.2011.09.046

Wang, Q., Cui, C., Wang, Q., Yan, N. (2011). Fabrication of a porous CuAlMn shape memory alloy by the sintering–dissolution process. Mater. Lett. 65, 2735–2738. http://dx.doi.org/10.1016/j.matlet.2011.05.092

Yen, F.C., Hwang, K.S. (2011). Shape memory characteristics and mechanical properties of high-density powder metal TiNi with post-sintering heat treatment. Mater. Sci. Eng. A 528, 5296–5305. http://dx.doi.org/10.1016/j.msea.2011.03.028

Published

2015-06-30

How to Cite

Olmos, L., Alvarado-Hernández, F., Jiménez, O., Vergara-Hernández, H. J., Arroyo Albiter, M., & Ochoa-Gamboa, R. A. (2015). Characterization of Ni53.5-Fe19.5-Ga27 Ni53.5 ferromagnetic shape memory alloy produced by powder metallurgy. Revista De Metalurgia, 51(2), e040. https://doi.org/10.3989/revmetalm.040

Issue

Section

Articles

Most read articles by the same author(s)