An experimental study of high-hydrogen welding processes

Authors

  • Dariusz Fydrych Gdansk University of Technology (GUT)
  • Jerzy Łabanowski Gdansk University of Technology (GUT)

DOI:

https://doi.org/10.3989/revmetalm.055

Keywords:

Diffusible hydrogen, Glycerin method, Mercury method, Underwater welding, Weldability

Abstract


This paper presents investigation results of determination of the diffusible hydrogen content in deposited metal obtained by means of two most often used methods-the glycerin method and the mercury method. Relation has been defined between results of those methods in the area characteristic of low-hydrogen as well as high-hydrogen welding processes. Relations available in the literature do not include the diffusible hydrogen content in deposited metal greater than 35 ml/100 g. Extending the scope of analysis of the diffusible hydrogen quantity to an 80 ml/100 g level considerably simplifies carrying out the steel weldability assessment with the use of high-hydrogen processes and with welding in water environment.

Downloads

Download data is not yet available.

References

Anon. (1974). Relation between hydrogen contents by IIW and JIS method. International Institute of Welding, Document IIW Doc. II-698-74.

Anon. (1986). Method of measurement for hydrogen evolved from steel welds. International Institute of Welding, Document IIW Doc. II-1073-86.

Coe, F.R. (1972). The comparison of hydrogen levels. International Institute of Welding Document IIW Doc. II-A-305-1972.

Fydrych, D., ¸abanowski, J. (2012). Determining diffusible hydrogen amounts using the mercury method. Weld. Int. 26 (9), 697–702. http://dx.doi.org/10.1080/09507116.2011.592682

Fydrych, D., ¸abanowski, J., Rogalski, G. (2013). Weldability of high strength steels in wet welding conditions. Pol. Marit. Res. 20 (2), 67–73. http://dx.doi.org/10.2478/pomr-2013-0018

Grela, P., Mazur, M. (2002). Comparison investigations of hydrogen diffusing from weld deposit determined by glycerin and mercury methods. Institute of Welding Bulletin 46, 54–55.

ISO 3690 (2012). Welding and allied processes. Determination of hydrogen content in arc weld metal.

Kannengiesser, T., Tiersch, N. (2010). Comparative study between hot extraction methods and mercury method—A national round robin test. Weld. World 54 (5), R108-R114. http://dx.doi.org/10.1007/BF03263496

Karkhin, V.A., Levchenko, A.M. (2008). Computer-aided determination of diffusible hydrogen in deposited weld metal. Weld. World 52 (2), 3–11. http://dx.doi.org/10.1007/BF03266624

Kotecki, D.J. (1992). Hydrogen reconsidered. Weld. J. 71 (8), 35–43.

Kotecki, D.J. (1994). Aging of welds for hydrogen removal. Weld. J. 73 (6), 75–79.

Kozak, T. (2011). Resistance to cold cracking of welded joints made of P460NL1 steel. Adv. Mater. Sci. 11 (3), 20–27. http://dx.doi.org/10.2478/v10077-011-0014-8

Kühn, S., Unterumsberger, F., Suter, T., Poh, M. (2013). New methods for analysis of diffusible hydrogen in high-strength steels. Materials Testing 55 (9), 648–652. http://dx.doi.org/10.3139/120.110483

Kurji, R., Coniglio, N. (2015). Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. Int. J. Adv. Manuf. Tech. 77 (9), 1581–1597. http://dx.doi.org/10.1007/s00170-014-6555-3

López, F.A., Sierra, M.J., Rodríguez, O., Millán, R., Alguacil, F.J. (2014). Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil. Rev. Metal. 50 (1), e001. http://dx.doi.org/10.3989/revmetalm.001

López, F.A., Alguacil, F.J., Rodríguez, O., Sierra, M.J., Millán, R. (2015). Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation. Waste Manage. 35, 301–306. http://dx.doi.org/10.1016/j.wasman.2014.10.009

Padhy, G.K., Ramasubbu, V., Albert, S.K., Murugesan, N., Ramesh, C. (2012). Hot extraction of diffusible hydrogen and its measurement using a hydrogen sensor. Weld. World 56 (7), 18–25. http://dx.doi.org/10.1007/BF03321361

Padhy, G.K., Komizo, Y. (2013). Diffusible hydrogen in steel weldments -a status review. Transactions of JWRI 42, 39–62.

Padhy, G.K., Ramasubbu, V., Parvathavarthini, N., Wu, C.S., Albert, S.K. (2015a). Influence of temperature and alloying on the apparent diffusivity of hydrogen in high strength steel. Int. J. Hydrogen Energ. 40 (20), 6714–6725. http://dx.doi.org/10.1016/j.ijhydene.2015.03.153

Padhy, G.K., Ramasubbu, V., Albert, S.K. (2015b). Rapid determination of diffusible hydrogen in steel welds using a modified gas chromatography facility. J. Test. Eval. 43 (1), 69–79. http://dx.doi.org/10.1520/JTE20130077

Pan’cikiewicz, K., Zielin’ska-Lipiec, A., Tasak, E. (2013). Cracking of high-strength steel welded joints. Adv. Mater. Sci. 13 (3), 76–85.

Pokhodnya, I.K., Yavdishchin, I.R., Paltsevich, A.P., Shvachko, V.I., Kotelchuk, A.S. (2004). Metallurgy of arc welding. Interaction metal with gases. Naukova Dumka, Kiev.

Quintana, M.A. (1984). A critical-evaluation of the glycerin test. Weld. J. 63 (5), 141–149.

Stanisz, A. (2007). The accessible course of statistics with applying STATISTICA PL using the examples from medical science. Linear and non-linear models. Vol. II., StatSoft, Poland.

Ström, C., Elvander, J. (2004). Calibration and verification of the hot extraction method including a comparison with the mercury method. International Institute of Welding Document IIW Doc. II-1543-04.

Swierczyn’ska, A., Fydrych, D., ¸abanowski, J. (2012). The effect of welding conditions on diffusible hydrogen content in deposited metal. Solid State Phenom. 183, 193–200 http://dx.doi.org/10.4028/www.scientific.net/SSP.183.193

Published

2015-12-30

How to Cite

Fydrych, D., & Łabanowski, J. (2015). An experimental study of high-hydrogen welding processes. Revista De Metalurgia, 51(4), e055. https://doi.org/10.3989/revmetalm.055

Issue

Section

Articles