Technological practicability of the numericalmodeling of induction heating process in steel pieces

Authors

  • A. Iagar Faculty of Engineering Hunedoara, Politechnica University of Timisoara
  • I. Sora Faculty of Electrical Engineering, Politechnica University of Timisoara
  • D. Radu Faculty of Electrical Engineering, Politechnica University of Timisoara
  • C. Panoiu Faculty of Engineering Hunedoara, Politechnica University of Timisoara
  • C. Abrudean Faculty of Engineering Hunedoara, Politechnica University of Timisoara

DOI:

https://doi.org/10.3989/revmetalm.0736

Keywords:

Induction heating, Steel pieces, Numerical modeling, Numerical control, Optimization

Abstract


This paper presents the numerical modeling (using the Finite Difference Method-FDM, and Finite Element Method- FEM) of the electromagnetic and thermal fields in a steel piece heated up inside an induction crucible furnace, and the experimental validations. Both modelings have been validated experimentally, so they can be used in designing the equipments and in the numerical control of induction heating process. The program based on FDM can be used in the first stage of designing due to the reduced CPU time. In this stage the inductor parameters and heating time can be estimated, and a study of the influence of diverse factors upon the heating process can be achieved. The FLUX 2D program can be used in the optimization stage, because it allows a more thorough analysis of the phenomena.

Downloads

Download data is not yet available.

References

[1] T. Leuca, Electromagnetic field and thermal coupled field. Eddy currents (in Romanian), Editura Mediamira, Cluj-Napoca, Romania, 1996, pp. 16-23 and 78-81.

[2] I. Sora, N. Golovanov, L. Cantemir, N. Mogoreanu, M. Chindris, M. Ungureanu, V. Fireteanu, D. Ioachim, Gh. Floriganta and R. Popa, Electrothermal conversion and electrotechnologies, vol. 1 (in Romanian), EdituraTehnica, Bucharest, Romania, 1997, pp. 274-298.

[3] Y. Pleshivtseva, Int. J.Mater. Prod. Technol. 29 (2007) 137-148. doi:10.1504/IJMPT.2007.013121

[4] A. Bermúdez, D. Gómez, M. C. Muñiz and P. Salgado, Int. J. Numer.Meth. Eng. 71 (2007) 879-882. doi:10.1002/nme.2140

[5] A. Bermúdez, D. Gómez, M. Muñiz and P. Salgado, Adv. Comput.Math. 26 (2007) 39-62. doi:10.1007/s10444-005-7470-9

[6] F. Bay, V. Labbé and Y. Favennec, Int. J.Mater. Prod. Technol. 29 (2007) 52-69. doi:10.1504/IJMPT.2007.013130

[7] F. Bay, V. Labbé, Y. Favennec and J. L. Chenot, Int. J. Numer. Meth. Eng. 58 (2003) 839-867. doi:10.1002/nme.796

[8] K. Kurek and D.M. Dolega, Int. J.Mater. Prod. Technol. 29 (2007) 84-102. doi:10.1504/IJMPT.2007.013132

[9] J. Grum, Int. J.Mater. Prod. Technol. 29 (2007) 211-227. doi:10.1504/IJMPT.2007.013136

[10] R. Hiptmair and O. Sterz, Int. J. Numer.Model. 18 (2005) 1-21. doi:10.1002/jnm.555

[11] A. Masserey, J. Rappaz, R. Rozsnyo, M. Swierkosz, J. Comput. Phys., 205 (2005) 48-71. doi:10.1016/j.jcp.2004.10.035

[12] V. Rudnev, Int. J. Mater. Prod. Technol. 29 (2007) 43-51. doi:10.1504/IJMPT.2007.013119

[13] N. Mole and B. Stok, 8th Seminar of the International Federation for Heat Treatment and Surface Engineering – IFHTSE2001 Dubrovnik, Croatia, 2001.

[14] A. Alonso Rodriguez, R. Hiptmair and A. Valli, J. Numer. Anal. 24 (2004) 255–271. doi:10.1093/imanum/24.2.255

[15] V. Fireteanu and T. Tudorache, Int. J. Comput Math. Electr. Electron. Eng. 22 (2003) 68-78.[ doi:10.1108/03321640310452178

[16] Y. Favennec, V. Labbé and F. Bay, J. Comput. Phys. 187 (2003) 68-94. doi:10.1016/S0021-9991(03)00081-0

[17] P. D. Barba, A. Savini, F. Dughiero and S. Lupi, Int. J. Comput. Math. Electr. Electron. Eng. 22 (2003) 111-122. doi:10.1108/03321640310452213

[18] P. D. Barba, B. Forghani and D. A. Lowther, COMPEL: Int. J. ComputMath. Electr. Electron. Eng. 24 (2005) 271-280. doi:10.1108/03321640510571291

[19] O. Bodart, A. Boureau and R. Touzani, Appl. Math. Model. 25 (2001) 697-712. doi:10.1016/S0307-904X(01)00007-5

[20] B. Drobenko, O. Hachkevych and T. Kournyts’kyi, Int. J. Heat Mass Transfer. 50 (2007) 616-624. doi:10.1016/j.ijheatmasstransfer.2006.07.013

[21] J. Grum, Int. J.Mater. Prod. Technol. 29 (2007) 200-210. doi:10.1504/IJMPT.2007.013123

[22] A.Masserey, R. Rozsnyo, J. Rappaz, R. Touzani, Int. J. Appl. Electrom. Mech. 19 (2004) 51-56.

[23] J. Zgraja, Int. J. Comput.Math. Electr. Electron. Eng. 24 (2005) 305-313. doi:10.1108/03321640510571327

[24] C. Parietti and J. Rappaz, Math. Mod. Meth. Appl. Sci. 9 (1999) 1333-1350. doi:10.1142/S0218202599000592

[25] *** Flux Magazine, Cedrat, no 51, June 2006, pp. 8-9.

[26] http://www.arc.ro Products catalogue, ARC Brasov, 2002.

[27] A. Iagar, PhD Thesis, Faculty of Electrical Engineering, PolitehnicaUniversity of Timisoara, 2005.

[28] I. Sora, A. Iagar, N. Rusu, D. Radu and C. Panoiu, Rev. Roum. Sci. Technol. Electrotechn. Energ. 2 (2006) 169-182.

[29] http://www.cedrat.com FLUX 2D Version 7.40 – User’s guide, Cedrat, 1999.

Downloads

Published

2009-02-28

How to Cite

Iagar, A., Sora, I., Radu, D., Panoiu, C., & Abrudean, C. (2009). Technological practicability of the numericalmodeling of induction heating process in steel pieces. Revista De Metalurgia, 45(1), 20–31. https://doi.org/10.3989/revmetalm.0736

Issue

Section

Articles