Changes in the microstructure and passive layer of 2024-T3 Al-Cu alloy during a chemical cleaning employed in the aerospace industry

Authors

  • Juan J. Alba-Galvín Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Escuela Superior de Ingeniería, Universidad de Cádiz https://orcid.org/0000-0002-4163-3280
  • Manuel Bethencourt Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Facultad de Ciencias de Mar y Ambientales-Instituto de Investigaciones Marinas (INMAR), Universidad de Cádiz https://orcid.org/0000-0002-0488-7097
  • Francisco J. Botana Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Escuela Superior de Ingeniería, Universidad de Cádiz https://orcid.org/0000-0002-1134-2669
  • Leandro González-Rovira Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Escuela Superior de Ingeniería, Universidad de Cádiz https://orcid.org/0000-0003-1865-5294
  • José M. Sánchez-Amaya Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Escuela Superior de Ingeniería, Universidad de Cádiz https://orcid.org/0000-0002-4575-5103

DOI:

https://doi.org/10.3989/revmetalm.144

Keywords:

Alloy phases, Aluminum, Corrosion, Surface pretreatments

Abstract


A standard surface pretreatment for 2024-T3 Al-Cu alloy prior to the generation of chemical conversion coatings in the aerospace sector have been investigated. These pretreatments influence the alloy phases, which play a key role in the development of new eco-friendly chromium-free conversion coatings, but also in the susceptibility to localized corrosion in chloride medium. The complete pretreatment consists of two alkaline step and another acid step. Scanning Electron Microscopy revealed that after the complete pretreatment, Al(Cu,Mg) phases were partially or totally removed through dealloying with their subsequent copper enrichment, while only the aluminum matrix surrounding the Al(Cu,Fe,Mn,Si) phases was slightly attacked. Electrochemical analysis revealed the turn to cathodic character of Al(Cu,Mg) phases that still remain on the surface, while the Al(Cu,Fe,Mn,Si) phases have a higher corrosion potential than the aluminum matrix. Conversely, none of these phases were affected when only alkaline steps were employed. Identified the corrosion processes that take place in the different phases when the alloy is treated with a surface pretreatment, it is possible to design alternative Cr-free protective process.

Downloads

Download data is not yet available.

References

Aballe, A., Bethencourt, M., Botana, F.J., Marcos, M., Rodríguez, M.A. (1998). Seguimiento de la corrosión de la aleación AA2024 en disoluciones de NaCl mediante la medida del ruido electroquímico. Rev. Metal. 34 (Nº Ext.), 42-46. https://doi.org/10.3989/revmetalm.1998.v34.iExtra.705

Bethencourt, M., Botana, F.J., Cano, M.J., Marcos, M., Sánchez-Amaya, J.M., González-Rovira, L. (2009). Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms. Corros. Sci. 51 (3), 518-524. https://doi.org/10.1016/j.corsci.2008.12.027

Bethencourt, M., Botana, F.J., Cano, M.J., Gonzalez-Rovira, L., Marcos, M., Sánches-Amaya, J.M. (2012). Protection by Thermal and Chemical Activation with Cerium Salts of the Alloy AA2017 in Aqueous Solutions of NaCl. Metall. Mater. Trans. A. 43 (1), 182-194. https://doi.org/10.1007/s11661-011-0858-x

Boag, A., Hughes, A.E., Wilson, N.C., Torpy, A., MacRae, C.M., Glenn, A.M., Muster, T.H. (2009). How complex is the microstructure of AA2024-T3?. Corros. Sci. 51 (8), 1565-1568. https://doi.org/10.1016/j.corsci.2009.05.001

Boag, A., Taylor, R.J., Muster, T.H., Goodman, N., McCulloch, D., Ryan, C., Rout, B., Jamieson, D., Hughes, A.E. (2010). Stable pit formation on AA2024-T3 in a NaCl environment. Corros. Sci. 52 (1), 90-103. https://doi.org/10.1016/j.corsci.2009.08.043

Cerezo, J., Taheri, P., Vandendael, I., Posner, R., Lill, K., de Wit, J.H.W., Mol, J.M.C., Terryn, H. (2014). Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy. Surf. Coat. Tech. 254, 277-283. https://doi.org/10.1016/j.surfcoat.2014.06.030

DeRose, J.A., Suter, T., Balkowiec, A., Michalski, J., Kurzydlowski, K.J., Schmutz, P. (2012). Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio. Corros. Sci. 55, 313-325. https://doi.org/10.1016/j.corsci.2011.10.035

Dimitrov, N., Mann, J.A., Vukmirovic. M., Sieradzki. K. (2000). Dealloying of Al2CuMg in Alkaline Media. J. Electrochem. Soc. 147 (9), 3283-3285. https://doi.org/10.1149/1.1393896

Eichinger, E., Osborne. J., Van Cleave, T. (1997). Hexavalent chromium elimination: An aerospace industry progress report. Met. Finish 95 (3), 36-41. https://doi.org/10.1016/S0026-0576(97)86771-2

Gao, M., Feng, C.R., Wei, R.P. (1998). An Analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 Alloys. Metall. Mater. Tans. A. 26 (4), 1145-1151. https://doi.org/10.1007/s11661-998-0240-9

González Fernández, J.A. (1989). Control de la Corrosion. Estudio y medida por técnicas electroquímicas, Editorial CSIC, Madrid.

Glenn, A.M., Hughes, A.E., Muster, T.H., Lau, D., Wilson, N.C., Torpy, A., MacRae, C.M., Ward, J. (2013). Investigation into the influence of carbon contamination on the corrosion behaviour of Aluminum microelectrodes and AA2024-T32013. J. Electrochem. Soc. 160 (3), 119-127. https://doi.org/10.1149/2.047303jes

Guillaumin, V., Mankowski, G. (1998). Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros. Sci. 41 (3), 421-438. https://doi.org/10.1016/S0010-938X(98)00116-4

Guo. Y., Frankel, G.S. (2012). Characterization of trivalent chromium process coating on AA2024-T3. Surf. Coat. Tech. 206 (19-20), 3895-3902. https://doi.org/10.1016/j.surfcoat.2012.03.046

Harvey, T.G. (2013). Cerium-based conversion coatings on aluminium alloys: a process review. Corros. Eng. Sci. Techn. 48 (4), 248-269. https://doi.org/10.1179/1743278213Y.0000000089

Hughes, A.E., Harvey, T.G., Nikpour, T., Muster, T.H., Hardin, S.G. (2005). Non-chromate deoxidation of AA2024-T3 using Fe(III)-HF-HNO3. Surf. Interface Anal. 37 (1), 15-23. https://doi.org/10.1002/sia.1998

I+D+P-072 (2009). Cleaning and pickling of aluminium and its alloys. Airbus Specification, Last revision: May 2009. https://w13.airbus.com/airbussupply.

Jones, M.J., Heurtier, P., Desrayaud, C., Montheillet, F., Allehaux, D., Driver, J.H. (2005). Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Mater. 52 (8), 693-697. https://doi.org/10.1016/j.scriptamat.2004.12.027

Kendig, M.W., Buchheit, R.G. (2003). Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 59 (5), 379-400. https://doi.org/10.5006/1.3277570

Kulinich, S.A., Akhtar, A.S. (2012). On Conversion Coating Treatments to Replace Chromating for Al Alloys: Recent Developments and Possible Future Directions. Russ. J. Non-Ferr. Met. 53 (2), 176-203. https://doi.org/10.3103/S1067821212020071

Lacroix, L., Ressier, L., Blanc, C., Mankowski, G. (2008). Combination of AFM, SKPMF and SIMD to study the corrosion behaviour of S-phase particles in AA2024-T351. J. Electrochem. Soc. 155 (4), 131-137. https://doi.org/10.1149/1.2833315

Li. L., Desouza, A.L., Swaing, G.M. (2014). Effect of deoxidation pretreatment on the corrosion inhibition provided by a trivalent chromium process (TCP) conversion coating on AA2024-T3. J. Electrochem. Soc. 161 (5), 246-253. https://doi.org/10.1149/2.031405jes

Moffitt, C.E., Wieliczka, D.M., Yasuda, H.K. (2001). An XPS study of the elemental enrichment on aluminium alloy surfaces from chemical cleaning. Surf. Coat. Tech. 137 (2-3), 188-196. https://doi.org/10.1016/S0257-8972(00)01121-X

Montemor, M.F. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Tech. 258, 17-37. https://doi.org/10.1016/j.surfcoat.2014.06.031

Nieves, C., Remolina, E.N., Hernández, C.A., Rueda, L.M., Coy, A.E., Viejo, F. (2017). Síntesis, caracterización y evaluación de la resistencia a la corrosión de recubrimientos híbridos Sol-Gel base TEOS/MPS sobre la aleación AA2050-T8. Rev. Metal. 53 (4), e106. https://doi.org/10.3989/revmetalm.106

Obispo, H.M., Murr, L.E., Arrowood, R.M., Trillo, E.A. (2000). Copper deposition during the corrosion of aluminum alloy 2024 in sodium chloride solutions. J. Mater. Sci. 35 (14), 3479-3495. https://doi.org/10.1023/A:1004840908494

Osborne, J.H. (2001). Observations on chromate conversion coatings from a sol-gel perspective. Prog. Org. Coat. 41 (4), 280-286. https://doi.org/10.1016/S0300-9440(01)00143-6

Pinc, W., Geng, S., O'Keefe, M., Fahrenholtz, W., O'Keefe, T. (2009). Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3. Appl. Surf. Sci. 255 (7), 4061-4065. https://doi.org/10.1016/j.apsusc.2008.10.110

Qi, J.-T., Hashimoto, T., Walton, J.R., Zhou, X., Skeldon, P., Thompson, G.E. (2015). Trivalent chromium conversion coating formation on aluminium. Surf. Coat. Tech. 280, 317-329. https://doi.org/10.1016/j.surfcoat.2015.09.024

Qi, J., Nemcova, A., Walton, J.R., Zhou, X., Skeldon, P., Thompson, G.E. (2016). Influence of pre- and post-treatments on formation of a trivalent chromium conversion coating on AA2024 alloy. Thin. Solid. Films 616, 270-278. https://doi.org/10.1016/j.tsf.2016.08.044

Rayner-Canham, G., (2000). Química Inorgánica Descriptiva, Pearson, Nueva York.

Strohmeier, B.R. (1990). An ESCA method for determinaning the oxide thickness on aluminium alloy. Surf. Interface. Anal. 15 (1), 51-56. https://doi.org/10.1002/sia.740150109

?wiatowska-Mrowiecka, J., Zanna, S., Ogle, K., Marcus, P. (2008). Adsorption of 1,2-diaminoethane on ZnO thin films from p-xylene. Appl. Surf. Sci. 254 (17), 5530-5539. https://doi.org/10.1016/j.apsusc.2008.02.170

Tian, W., Li, S., Liu, J., Yu, M., Du, Y. (2017). Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties. Chinese. J. Aeronaut. 30 (5), 1777-1788. https://doi.org/10.1016/j.cja.2017.06.001

Tiringer, U., Kovac, J., Milosev, I. (2017). Effects of mechanical and chemical pre-treatments on the morphology and composition of surfaces of aluminium alloys 7075-T6 and 2024-T3. Corros. Sci. 119, 46-59. https://doi.org/10.1016/j.corsci.2017.02.018

Toh, S.K., Hughes, A.E., McCulloch, D.G., duPlessis, J., Stonham, A. (2004). Characterization of non-Cr-based deoxidizers on Al alloy 7475-T7651. Surf. Interface. Anal. 36 (12), 1523-1532. https://doi.org/10.1002/sia.1938

Twite, R.L., Bierwagen, G.P. (1998). Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat. 33 (2), 91-100. https://doi.org/10.1016/S0300-9440(98)00015-0

Viroulaud, R., Swiatowska, J., Seyeux, A., Zanna, S., Tardelli, J., Marcus, P. (2017). Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy. Appl. Surf. Sci. 423, 927-938. https://doi.org/10.1016/j.apsusc.2017.06.246

Yasakau, K.A., Zheludkevich, M.L., Lamaka, S.V., Ferreira, M.G.S. (2006). Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds. J. Phys. Chem. B. 110 (11), 5515-5528. https://doi.org/10.1021/jp0560664 PMid:16539491

Zhang, X., Zhou, X., Hashimoto, T., Liu, B. (2017). Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting. Mater. Charact. 130, 230-236. https://doi.org/10.1016/j.matchar.2017.06.022

Zhou, X., Luo, C., Hashimoto, T., Hughes, A.E., Thompson, G.E. (2012). Study of localized corrosion in AA2024 aluminium alloy using electron tomography. Corros. Sci. 58, 299-306. https://doi.org/10.1016/j.corsci.2012.02.001

Zhu, D., Van Ooij, W.J. (2003). Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodiumchloride solution. Part 2: mechanism for corrosion protection. Corros. Sci. 45 (10), 2177-2197. https://doi.org/10.1016/S0010-938X(03)00061-1

Published

2019-06-30

How to Cite

Alba-Galvín, J. J., Bethencourt, M., Botana, F. J., González-Rovira, L., & Sánchez-Amaya, J. M. (2019). Changes in the microstructure and passive layer of 2024-T3 Al-Cu alloy during a chemical cleaning employed in the aerospace industry. Revista De Metalurgia, 55(2), e144. https://doi.org/10.3989/revmetalm.144

Issue

Section

Articles

Most read articles by the same author(s)