Ammoniacal Carbonate Leaching: Estimation of dissolved nickel in the distillation effluent

Authors

DOI:

https://doi.org/10.3989/revmetalm.149

Keywords:

Ammoniacal carbonate leaching, Basic nickel carbonate, Caron process, Dissolved nickel, Distillation

Abstract


The factors that incise in the increment of the nickel dissolved concentration, in the basic nickel carbonate suspension, of the ammoniacal carbonate leaching technology were identified. A statistical model was proposed to estimate the nickel in function of the factors: ammonia concentration, carbon dioxide and sulfur in the liquor fed to the distillation columns, and the suspension pH. The model was validated with experimental antecedents and a series of equations of the thermodynamic equilibrium in Ni (II)-NH3-CO32--S2O32--SO42--H2O system. It was obtained that to more relationship Ni/S, CO2/S and smaller NH3/CO2, the dissolved nickel diminishes. When the alkalinity of the suspension diminishes to a pH inferior to 9, there is a tendency to the increment of dissolved nickel concentration. The analysis allowed the formulation of the possible chemical reactions involved in the carbonate leaching, which propitiate the increment of dissolved nickel.

Downloads

Download data is not yet available.

References

Arima, H., Fujita, T., Yen, W.-T. (2004). Using Nickel as a Catalyst in Ammonium Thiosulfate Leaching for Gold Extraction. Mater. Trans. 45 (2), 516-526. https://doi.org/10.2320/matertrans.45.516

Aylmore, M.G., Muir, D.M. (2001). Thiosulfate leaching of gold - A review. Miner. Eng. 14 (2), 135-174. https://doi.org/10.1016/S0892-6875(00)00172-2

Biswas, A., Chakraborti, N., Sen, P.K. (2008). Optimization of nonferrous metals recovery from sea nodules in a hydrometallurgical circuit using multi-objetive evolutionary and genetic algorithms. Hydrometallurgy 2008, Proceedings of the Sixth International Symposium, pp. 298-315.

Buffle, J., Zhang, Z., Startchev, K. (2007). Metal flux and dynamic speciation at (bio) interfaces. Part I: Critical evaluation and compilation of physico-chemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 41 (22), 7609-7620. https://doi.org/10.1021/es070702p PMid:18075065

Chang, C.A.R., Rojas-Vargas, A. (2009). La lixiviación del proceso Caron: Síntesis del conocimiento para su perfeccionamiento industrial. Parte II. Tecnología Química 29 (1), 96-105.

Chen, T., Hefter, G., Buchner, R. (2005). Ion Association and Hydration in Aqueous Solutions of Nickel(II) and Cobalt(II) Sulfate. J. Solution Chem. 34 (9), 1045-1066. https://doi.org/10.1007/s10953-005-6993-5

Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M. (1978). Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE. J. 24 (6), 966-976. https://doi.org/10.1002/aic.690240605

García, P.A., Rojas-Vargas, A. (2006). Comparación de los floculantes CHEMADD A-41, 42 y 43 de la firma Chematek, el IP-600 de la firma Zar Cia. y el Percol, versión canadiense del MAGNAFLOC R-155. Tecnología Química 26 (3), 41-47.

Guo, X-Y., Huang, K., Zhang, D.-M. (2004). Preparation of basic carbonate particles in solution system of Ni(III)-NH3-CO32?-H2O. T. Nonferr. Metal. Soc. China 14 (5), 1006-1011.

Grosse, A.C., Dicinoski, G.W., Shaw, M.J., Haddad, P.R. (2003). Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (A Review). Hydrometallurgy 69 (1-3), 1-21. https://doi.org/10.1016/S0304-386X(02)00169-X

Hikita, H., Konishi, Y. (1981). Absorption of Sulfur Dioxide into Aqueous Sodium Carbonate Solutions and Desorption of Carbon Dioxide. Bulletin of University of Osaka Prefecture. Series A, Engineering and Natural Sciences 30 (1), 29-40. http://hdl.handle.net/10466/8344.

Hummel, W., Thoenen, T., Berner, U., Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. PSI Report Nr. TM-44-14-05, Paul Scherrer Institut, Villigen, Switzerland, p. 35. https://www.psi.ch/sites/default/files/import/les/DatabaseEN/PSI-Bericht%252014-04_final_druckerei.pdf.

Irving, H., Williams, R.J.P. (1953). The stability of transition-metal complexes. J. Chem. Soc. 0, 3192-3210. https://doi.org/10.1039/jr9530003192

Jones, D., Moore, R. (2001). The application of the CESL nickel process to laterites. Cominco Engineering Services Ltd., Canada. https://www.teck.com/media/

CESL-Publication-Nickel-Process-Laterites-Alta-2001.pdf.

Kazuyoshi, S., Masayoshi, H., Tatsuhico, E. (1974). Kinetics and Mechanism of the Ammonia Pressure Leaching of Lateritic Ore Containing Nickel. T. Jpn. I. Met. 15 (2), 121-128. https://doi.org/10.2320/matertrans1960.15.121

Kotelnikova, N.E., Mikhailidi, A.M. (2012). Hydrate cellulose films and preparation of samples modified with nickel nano- and microparticles. Cell. Chem. Technol. 46 (1-2), 27-33. http://www.cellulosechemtechnol.ro/pdf/CCT1-2(2012)/p.27-33.pdf.

Magaña Haynes, M.E., Rojas-Vargas, A. (2013). Rango de pH para destilar el licor de lixiviación carbonato amoniacal. Tecnología Química 33 (3), 200-205.

Magaña Haynes, M.E. (2016). Evaluación de la adición de licor con alto contenido de Amoniaco y Dióxido de Carbono en el alambique 208 de la Empresa Comandante Che Guevara. Tecnología Química 36 (1), 27-36.

Rojas-Vargas, A., Trujillo, M.E. (2012). Medición del pH durante la destilación del licor producto del proceso CARON. Parte (III). Tecnología Química 32 (2), 177-185.

Schröder, D., Duchá?ková, L., Tarábek, J., Karwowska, M., Fijalkowski, K., On?ák, M., Slaví?ek, P. (2011). Direct Observation of Triple Ions in Aqueous Solutions of Nickel(II) Sulfate: A Molecular Link Between the Gas Phase and Bulk Behavior. J. Am. Chem. Soc. 133 (8), 2444-2451. https://doi.org/10.1021/ja105408a PMid:21291264

Scott, W.D., Hobbs, P.V. (1967). The Formation of sulfate in water Droplets. Journal of the atmospheric Sciences 24, 54-57. https://doi.org/10.1175/1520-0469(1967)024<0054:TFOSIW>2.0.CO;2

Smith, R.M., Martell, A.E. (1976). Critical Stability Constants. Inorganic Complexes. Volume 4, Plenum Press, New York. https://doi.org/10.1007/978-1-4757-5506-0

Söhnel, O., Mullin, J. (1979). Kinetics of precipitation of nickel ammonium sulphate hexahydrate from aqueous solutions. Cryst. Res. Technol. 14 (2), 217-228. https://doi.org/10.1002/crat.19790140215.

Warner, T.E. (1988). An electrochemical study of the oxidative dissolution of synthetic nickel-iron-sulphide minerals in aqueous media. PhD Thesis, University of Leeds, Department of Mining and Mineral Engineer, p. 499. https://etheses.whiterose.ac.uk/1075/.

Xu, B., Kong, W., Li, Q., Yang, Y., Jiang, T., Liu, X. (2017). A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution. Metals 7 (6), 1-16. https://doi.org/10.3390/met7060222

Yoosefian, M., Ahmadzadeh, S., Aghasi, M., Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. J. Mol. Liq. 225, 544-553. https://doi.org/10.1016/j.molliq.2016.11.093

Zhan, J., He, Y.-H., Zhou, Di-F., Zhang, C.-F. (2011). Thermodynamic analysis on synthesis of fibrous Ni-Co alloys precursor and Ni/Co ratio control. T. Nonferr. Metal. Soc. China 21 (5), 1141-1148. https://doi.org/10.1016/S1003-6326(11)60834-0

Zhang, W., Cheng, C.Y. (2007). Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy 89 (3-4), 137-159. https://doi.org/10.1016/j.hydromet.2007.08.010

Published

2019-09-30

How to Cite

Rojas Vargas, A., Magaña Haynes, M. E., & Riverón, A. R. (2019). Ammoniacal Carbonate Leaching: Estimation of dissolved nickel in the distillation effluent. Revista De Metalurgia, 55(3), e149. https://doi.org/10.3989/revmetalm.149

Issue

Section

Articles