Formation mechanism of manganese compounds in acidic electrolytes of copper

Authors

  • J. Ipinza Departamento de Ingeniería Metalúrgica. Universidad Arturo Prat
  • J. P. Ibáñez Departamento de Ingeniería Metalúrgica. Universidad Arturo Prat
  • A. Pagliero Departamento de Ingeniería Metalúrgica. Universidad de Concepción
  • F. Vergara Departamento de Ingeniería Metalúrgica. Universidad de Concepción

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i1.46

Keywords:

PbCaSn anodes, Corrosion, Lead slime, Manganese slime, Electrowinning

Abstract


The formation mechanism of manganese compounds in acidic electrolytes (180 g/l of H2SO4) was studied by potentiostatic experiments at 50 ºC. In the oxide layer on a PbCaSn anode, amorphous MnOOH was formed. XRD showed that anodic slimes collected from the cell bottom after 3 h was made up of: g-MnO2 and e-MnO2. It was proved that the e type oxide was formed by an electrochemical process and the g type oxide was formed by a pure chemical precipitation, the last one depends on the MnO4- concentration in the electrolyte. The electrochemical formation of MnOOH only depends on the concentration of Mn3+ in the electrolyte, and this amorphous compound is the intermediate specie for generating e-MnO2. Fe2+, in the presence of Mn2+, inhibited the formation of both MnO2 oxides, and in the anode interfase reduces PbO2 to PbSO4, that repots in the anodic slime. Furthermore, the presence of ferrous ion resulted in a better distribution of the manganese compounds and originates PbSO4 precipitates, which report on the slime

Downloads

Download data is not yet available.

References

[1] R. Sperline, y. Song, E. Ma y H. Freiser, Hydrometallurgy 50 (1998) 1-21. doi:10.1016/S0304-386X(98)00036-X

[2] C. Cheng, C. Hughes, K. Barnard y K. Larcombe, Hydrometallurgy 58 (2000) 135-150. doi:10.1016/S0304-386X(00)00120-1

[3] L. Farias, A. Reghezza y J. Vergara, A. Sutulov Memorial Volume, Vol. II, Eds. I. Wilkomirsky, M. Sánchez y C. Hecker, Universidad de Concepción, Concepción-Chile, 1994, pp. 137-162.

[4] D. Shaw, D. Dreisinger, D. Readett y T. Lancaster, Proc. Copper 99 Int. Conf., Electrorefinig and Electrowinning of Copper, Vol. III, 1999, p. 653-669.

[5] M. Ghaemi, Z. Biglari y L. Binder, J. Power Sourc.102 (2001) 29-34. doi:10.1016/S0378-7753(01)00777-7

[6] J. Ipinza y J.P. Ibáñez: I Cong. Macroreg. De Metalurgia, I COMMET-2003, Tacna, Perú, 2003.

[7] J. Ipinza, J.P. Ibáñez, F. Vergara y A. Pagliero, Rev. Metal. Madrid 40 (2004) 13-20.

[8] K. Ravindran, L. Heerman y L. Van Simaeys, Bull. Soc. Chim. Belg. 84 (1975) 83-90.

[9] S. Bodoardo, J. Brenet, M. Maja y P. Spinelli, Electrochim. Acta 39 (1994) 1.999-2.004.

[10] S. Donne, G. Lawrance y D. Swinkels, J. Electrochem. Soc. 144 (1997) 2.954-2.960.

[11] A. Pagliero, F. Vergara, J. Ipinza y J. Delplancke, II Encuentro Minero del Cono Sur de América, VII Encuentro Minero de Tarapacá, Eds. J.P. Ibáñez, E.Patiño, X. Veloso, Iquique, Chile, 2001, pp. I-123-I-132.

[12] F. Vergara, A. Pagliero y J. Ipinza, IBEROMET VI, Ciencia y Tecnología de los Materiales, Eds. J.M. Guilemany y F. Vivas, Barcelona, España, 2000.

[13] J. Ipinza, J.P. Ibáñez, F. Vergara y A. Pagliero: 5th Int. Symp. Hydrometallurgy, 2003, Eds. C. young et al., Volume 2, 1267, TMS-EPD, Vancouver, Canada, 2003.

[14] B. Monahov, D. Pavlov, J. Electrochem. 23 (1993) 1.244-1.250.

[15] P. Mattesco, N. Bui, P. Simon, J. Electrochem. Soc. 144 (1977) 443-449. doi:10.1149/1.1837429

[16] T. Ohzuku y T. Hirai, Proc. Symp. Manganese dioxide electrode theory and practice for electrochemical applications, Eds. B. Schumm, R. Middaugh, M. Grotheer y J. Hunter, Vol. 85-4, 1985, pp. 141-157.

[17] P. Ruetschi, Proc. Symposium Manganese dioxide electrode theory and practice for electrochemical applications, Eds. B. Schumm, R. Middaugh, M. Grotheer y J. Hunter, Vol. 85-4, 1985, pp. 112-139.

[18] C. Andrade, Tesis doctoral, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2004

[19] P. Ruetschi, J. Electrochem. Soc. (1976) 495-500. doi:10.1149/1.2132861

[20] H. Finklea, Semiconductor Electrodes, Department of Chemistry, West Virginia University, Ed. Elsevier, Morgantown, WV 26506, EE.UU., 1988.

[21] N. Sato, Tesis Doctoral, Graduate School of Engineering, Hokkaido University, Sapporo, Japan, 1998.

[22] D. Skoog, D. West, F. Holler, Química analítica, Ed. Mc Graw-Hill, Sexta Edición, 1999, p. 312-315.

[23] J. Koshiba y S. Nishizawa, Electrochemistry of manganese dioxide and manganese dioxide batteries on Japan, V.2, p.85, Eds. K. Takahashi, S. yoshizawa y A. Kozawa, published by the US Branch Office of the Electrochemical Soc. Of Japan, Cleveland, 1981.

[24] D. Fiedler, J. Besenhard y M. Fooken, J. Power Sourc. 69 (1997) 157-160. doi:10.1016/S0378-7753(97)02513-5

[25] A. Le Gal, S. Sarciaux, A. Verbaere, y. Piffard y D. Guyomard, J. Electrochem. Soc. 147 (2000) 945-952 doi:10.1149/1.1393296

Downloads

Published

2007-02-28

How to Cite

Ipinza, J., Ibáñez, J. P., Pagliero, A., & Vergara, F. (2007). Formation mechanism of manganese compounds in acidic electrolytes of copper. Revista De Metalurgia, 43(1), 11–19. https://doi.org/10.3989/revmetalm.2007.v43.i1.46

Issue

Section

Articles