Specimen size effects on the tensile strength and fracture toughness

Authors

  • J. Terán CIVIE-Instituto Mexicano del Transporte
  • J. L. González ESIQIE-Instituto Politécnico Nacional, Departamento de Ingeniería Metalúrgica, Unidad Profesional Adolfo López Mateos
  • J. M. Hallen ESIQIE-Instituto Politécnico Nacional, Departamento de Ingeniería Metalúrgica, Unidad Profesional Adolfo López Mateos
  • M. Martínez CIVIE-Instituto Mexicano del Transporte

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i5.78

Keywords:

Tensile properties, Fracture toughness, Compliance function, CTOD-R curves, Miniature compact tension specimen

Abstract


In this work, an experimental research was conducted to determine size and orientation effects on tension and toughness properties through CTOD-R curves, using standard and miniature specimens taken from a structural steel plate. Compliance function estimation for the miniature size samples through load-displacement curves was considered. Experimental and statistical results showed that size and orientation affect tension and toughness properties. The miniature tension test specimens showed strength values slightly greater than the standard ones but with less ductility. Miniature specimen CTOD-R curves showed sensibility to load changes and measurement method of crack aperture and crack length. Inconsistency in fracture toughness for specimen orientation longitudinal circumferential (LC) regarding size effect was also observed. Short orientations showed less strength and toughness than the other directions.

Downloads

Download data is not yet available.

References

[1] ASTM Standard E 1820-01, Standard Test Method for Measurement of Fracture Toughness, ASTM Standards on Disc, Vol.03.01, West Conshohocken, Philadelphia, 2001, pp. 17-18; 27-29.

[2] ASTM Standard E 813-89, Standard Test Method for JIC A Measure of Fracture Toughness, ASTM Standards, Vol.03.01, 1990, pp. 702-707.

[3] L.M. Barker, Int. J. Fract. 15 (1979) 515-536. doi:10.1007/BF00019921

[4] X.C. Yin y T.G. Chen, J. Test. Eval. 20 (1992) 239-247.

[5] H.J Schindler y M. Veidt, Fracture toughness Evaluation From Instrumented Sub-Size Charpy-Type Tests, Small Specimen Test Technnique, ASTM 1329, W.R. Corwin, S. T. Rosinski, y E. van Walle, Eds., American Society for Testing and Materials, 1998, pp. 48-62.

[6] W. Schmitt, H. Talja, W. Böhme, S. Oeser S y H. Stöckl, Characterization of Ductile Fracture toughness Based on Subsized Charpy and TensileTest Results, Small Specimen Test Technnique, ASTM 1329, W.R. Corwin, S. T. Rosinski, y E. van Walle, Eds., American Society for Testing and Materials, 1998, pp. 63-81.

[7] H. Talja, Tesis de Doctorado, Technical Reseca Centre of Finland, 1998.

[8] D. Hellmann y K.H. Schwalbe, J. Test. Eval. 14 (1986) 292-297.

[9] G. I. Barenblatt, Scaling Phenomena in Fatigue and Fracture. Lawrence Berkeley National Laboratory (University Of California), 2004, pp.1-21. URL http://repositories.cdlib.org/lbnl/LBNL-56765.

[10] R.O. Ritchie, Int. J. Fract. 132 (2005) 197-203, URL: www.lbl.gov/Ritchie/Library/PDF/ROR-IJF05-scaling.pdf

[11] S.K. Putatunda, J.M. Rigsbee y H.T. Corten, J. Test. Eval. 13 (1985) 181-190.

[12] S.K. Putatunda, J. Test. Eval. 14 (1986) 49-57.

[13] N.F. Panayotou, S.D.Atkin, R.J. Puigh y B.A. Chin, Design and Use of Nonstandard Tensile Specimens for Irradiated Materials Testing. The use of small scale specimens for testing irradiated material, ASTM STP 888. W.R. Corwin y G. E. Lucas, Eds., American Society for Testing and Materials, Philadelphia. 1986, pp. 201-219.

[14] F.H. Huang, Use of subsized specimens for evaluating the fracture toughness of irradiated materials, The use of small scale specimens for testing irradiated material, ASTM STP 888. W.R. Corwin y G. E. Lucas, Eds., American Society for Testing and Materials, Philadelphia. 1986, pp. 290-304.

[15] F.H. Huang, J. Test. Eval.13 (1985) 257-264.

[16] D.J. Alexander, Fracture Toughness Measurements with Subsize Disk Compact Specimens, Technical Report, 1992, pp. 1-28. URL: www.osti.gov/servlets/purl/104508-lV57sC/webviewable.

[17] W. P. A. Belcher y S. G. Druce, Micromechanisms of Ductile Stable Crack Growth in Nuclear Pressure Vessel Steels, Elastic Plastic Fracture Second Symposium, Volume II- Inelastic Crack Analysis. ASTM STP 803, C.F. Shih y J. P. Gudas, Eds., American Society for Testing and Materials, 1983, pp. II-739-II-762.

[18] J.C Lautridou y A. Pineau, Eng. Fract. Mech. 15 (1981) 55-71. doi:10.1016/0013-7944(81)90105-3

[19] T.L. Anderson, Fracture Mechanics, CRC Press., Boca Raton, Florida, EEUU, 1991, pp. 194-198.

[20] H. A. Ernst, Material Resistence and Instability Beyond J-Controlled Crack Growth, Elastic Plastic Fracture Second Symposium, Volume IInelastic Crack Analysis. ASTM STP 803, C.F. Shih y J. P. Gudas, Eds., American Society for Testing and Materials, 1983, pp. I-191-I-213.

[21] J.S. Solecki, Fracture mechanics, Swanson Analysis Systems, Inc. Houston. Pa. E.E.U.U. 1989, pp. 4.20-4.37.

[22] ASTM Standard E 647-00, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM Standards on Disc, Vol.03.01. West Conshohocken, Philadelphia, 2001, pp. 5-13.

[23] A. Saxena y S.J. Jr. Hudak, Int. J. Fract. 14 (1978) 453-468. doi:10.1007/BF01390468

[24] R. Johnson, Estadística Elemental, Grupo Editorial Iberoamérica, México,D.F.,1990, pp. 365-371,

[25] G. Díaz, A. Artigas, V. Martínez y P. Kittl, A statistical analysis of mechanical properties and size effect in AISI 1020 and AISI 1045 steels subjected to traction. Applied Mechanics in the Americas, V6, pp 463-466, edited by H.I. Weber, P.B. Gonsalvez, I. Jasiuk, D. Pamplona, C. Steele and L. Bevilacqua, Published by AAA and ABCM. Río de Janeiro, 1999.

[26] W.A. Spitzig y R.J. Sober, Metall. Trans.12A (1981) 281-291.

[27] D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Países Bajos, 1982, pp.304-309.

Downloads

Published

2007-10-30

How to Cite

Terán, J., González, J. L., Hallen, J. M., & Martínez, M. (2007). Specimen size effects on the tensile strength and fracture toughness. Revista De Metalurgia, 43(5), 337–351. https://doi.org/10.3989/revmetalm.2007.v43.i5.78

Issue

Section

Articles