Syntesis by reactive grinding of molibdenum iron bimetallic nitride

Authors

  • M. A. Roldán Instituto de Ciencia de Materiales de Sevilla, centro mixto CSIC-US
  • A. Ortega Instituto de Ciencia de Materiales de Sevilla, centro mixto CSIC-US
  • I. Palencia Dpto. Ingeniería Química, Universidad de Sevilla
  • C. Real Instituto de Ciencia de Materiales de Sevilla, centro mixto CSIC-US

DOI:

https://doi.org/10.3989/revmetalm.2008.v44.i1.91

Keywords:

Grinding, Molybdenum, Iron, Ternary nitride

Abstract


The transition metal nitride ternary show similar properties to the binary nitride and some times this behaviour are improved. In the present work, the molybdenum-iron nitride has been prepared by reactive grinding from the two metals under nitrogen atmosphere at a pressure of 11bar. The characterization of the compound is presented and it is also shown a study of the stability of the nitride under several atmospheres.

Downloads

Download data is not yet available.

References

[1] F.J. Disalvo, Science 247 (1990) 649-655. doi:10.1126/science.247.4943.649

PMid:17771880

[2] L. Volpe y M.J. Boudart, J. Solid State Chem. 59 (1985) 332-347. doi:10.1016/0022-4596(85)90301-9

[3] T.S. Oyama, J. Solid State Chem. 96 (1992) 442-445. doi:10.1016/S0022-4596(05)80279-8

[4] L.E. Toth, Transition Metal Carbide and Nitrides. Academic Press, New York 1971 pp. 1-26.

[5] J.F. Shakelford, Introduction to Materials Science for Engineers, Macmillan, New York 1988 pp. 1-60.

[6] H.J. Goldschimdt, In Intersticial Alloys, Plenum Press, New York, 1967, pp. 214-244.

[7] E.L. Kugler, L.E. Mccandlish, A.J. Jacobson y R.R. Chianelli, United States Patent 5 (1992) 138, 111.

[8] W.E. Pickett, B.M. Klein y D.A. Papaconstantopoulos, Physica B, 107 (1981) 667-668. doi:10.1016/0378-4363(81)90636-7

[9] Z. You-Xiang y H Shou-An, Solid State Commun. 45 (1983) 281-283. doi:10.1016/0038-1098(83)90481-7

[10] E. Furimsky, Appl. Catal. A. 240 (2003) 1-28. doi:10.1016/S0926-860X(02)00428-3

[11] C.J.H. Jacobsen, Chem. Commun. 12 (2000) 1.057-1.058.

[12] R. Kojima y K. Aika, Appl. Catal. A 219 (2001) 141-147. doi:10.1016/S0926-860X(01)00676-7

[13] R. Kojima y K. Aika, Appl. Catal. A 215 (2001) 149-160. doi:10.1016/S0926-860X(01)00529-4

[14] C. Liang, W. Li, Z. Wei, Q. Xin y C. Li, Ind. Eng. Chem. Res. 39 (2000) 3.694-3.697.

[15] K. HADA, M. NAGAI S. OMI, J. Phys Chem. B 105 (2001) 4.084-4.093.

[16] B. Diaz, S.J. Sawhill, D.H. Bale, R. Main, D.C. Phillips, S. Korlann, R. Self, y M.E. Bussell, Catal. Today 86 (2003) 191-209. doi:10.1016/S0920-5861(03)00411-5

[17] Y. Chu, Z. Wei, S. Yang, C. Li, Q. Xin y E. Min, Appl. Catal. A 176 (1999) 17-26. doi:10.1016/S0926-860X(98)00225-7

[18] W. Yuhong, L. Wei, Z. Minghui, G. Naijia y T. Keyi, Appl. Catal. A 215 (2001) 39-45. doi:10.1016/S0926-860X(01)00537-3

[19] H. Wang, W. Li, M. Zhang y K. Tao, Catal. Lett. 100 (2005) 73-77. doi:10.1007/s10562-004-3088-7

[20] D.S. Bem, C.P. Gibson y H. Zur Loye, Chem. Mater. 5 (1993) 397-399. doi:10.1021/cm00028a001

[21] P.S. Herle, M.S. Hegde, K. Sooryanarayana, T. N. Guru Row y G.N. Subbanna, Inorg. Chem. 37 (1998) 4.128-4.130.

[22] S. Alconchel, F. Saphiña, D. Beltran y A. Beltran, J. Mater. Chem. 8 (1998) 1.901-1.909.

[23] S. Alconchel, F. Saphiña, D. Beltran y A. Beltran, J. Mater. Chem. 9 (1999) 749-755. doi:10.1039/a808697d

[24] S. Alconchel, F. Saphiña, R. Ibanez y A. Beltran, J. Mater. Chem. 11 (2001) 2.311- 2.314.

[25] S. Korlann, B. Diaz y M. E. Bussell, Chem. Mater. 14 (2002) 4.049-4.058.

[26] T.J. Prior y P. D. Battle, J. Solid State Chem. 172 (2003) 138-147. doi:10.1016/S0022-4596(02)00171-8

[27] C.J. H. Jacobsen, J.J. Zhu, H. Lindelov y J.Z. Jiang, J. Mater. Chem. 12 (2002) 3.113-3.116.

[28] K.S. Weil, P.N. Kumta y J. Grins, J. Solid State Chem. 146 (1999) 22-35. doi:10.1006/jssc.1999.8296

[29] S. Korlann, B. Diaz y M.E. Bussell, Chem Mater. 14 (2002) 4.049-4.058.

[30] L.M. Di, A. Calka, Z.L. Li y J.S. Williams, J. Appl. Phys. 78 (1995) 4.118-4.122.

[31] J.S. Benjamin; T.E. Volin, Metall. Trans. I 5 (1974) 1.929-1.934.

[32] A.E. Ermakov; E.E. Yurchikov y V.A. Barinov, Phys. Mct Metallogr. 52(6) (1981) 50-8.

[33] M. Lopez; J.A. Jiménez; O.Ruano; R. Benavente, Rev. Metal. Madrid 42(5) (2006) 324-333.

[34] F.G. Cuevas; J.M.Montes; J.M. Cintas; J.M. Gallardo, Rev. Metal. Madrid 42(2) (2005) 83-88.

[35] P. Matteazzi; G. Le Caër, J. Am. Ceram. Soc. 74 (1991) 1382-90. doi:10.1111/j.1151-2916.1991.tb04116.x

[36] F. J. Gotor, M.D. Alcalá, C. Real y J.M. Criado, J. Mater. Res. 17 (2002) 1.655-1.663.

[37] M.D. Alcalá, J.C. Sánchez-López, C. Real, A. Fernández y P. Mateáis, Diam. Relat. Mater. 10 (2001) 1.995-2.001.

[38] L.E. Alexander y H.P. Klung, X-Ray Diffraction Procedures Ed. John Wiley & Sons, New York, 1974, pp. 618.

[39] C. Dong y J. I. Langford, J. Appl. Cryst. 33 (2000) 1.177-1.179.

[40] T. Rojas, Tesis Doctoral, Facultad de Física, Universidad de Sevilla, 2001.

[41] D.J. Wallis, N.D. Browning, C.M. Megaridis y P. D. Nellist, J.Microscopy 184 (1996) 185-194. doi:10.1046/j.1365-2818.1996.1020659.x

[42] D.S. Bem, H.P Olsen y H. Zur Loye, Chem. Mater. 7 (1995) 1.824-1.828.

Downloads

Published

2008-02-28

How to Cite

Roldán, M. A., Ortega, A., Palencia, I., & Real, C. (2008). Syntesis by reactive grinding of molibdenum iron bimetallic nitride. Revista De Metalurgia, 44(1), 13–18. https://doi.org/10.3989/revmetalm.2008.v44.i1.91

Issue

Section

Articles