Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

Authors

  • J. M. Meza Grupo de Investigación en Nuevos Materiales, Universidad Pontificia Bolivariana
  • E. E. Franco Laboratório de Ultra-som, Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, Escola Politécnica da Universidade de São Paulo
  • M. C. M. Farias Laboratório de Fenômenos de Superficie, Departamento de Engenharia Mecanica e de Sistemas Mecânicos, Escola Politécnica da Universidade de São Paulo
  • F. Buiochi Laboratório de Ultra-som, Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, Escola Politécnica da Universidade de São Paulo
  • R. M. Souza Laboratório de Fenômenos de Superficie, Departamento de Engenharia Mecanica e de Sistemas Mecânicos, Escola Politécnica da Universidade de São Paulo
  • J. Cruz Grupo de Investigación en Nuevos Materiales, Universidad Pontificia Bolivariana

DOI:

https://doi.org/10.3989/revmetalm.2008.v44.i1.95

Keywords:

Mechanical properties, Nanoindentation, Ultrasound, Poisson’s ratio, Elastic modulus

Abstract


Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.

Downloads

Download data is not yet available.

References

[1] B.R. Lawn, J. Am. Ceram. Soc. 81 (1998) 1.977-1.994.

[2] W.C. Oliver y G.M. Pharr, J. Mater. Res. 7 (1992) 1.564-1.583.

[3] M.F. Doerner y W.C. Nix, J. Mater. Res. 1 (1986) 601-609. doi:10.1557/JMR.1986.0601

[4] A. Stilwell y D. Tabor, Proc. Phys. Soc. 78 (1961) 169-179. doi:10.1088/0370-1328/78/2/302

[5] G.M. Pharr, W.C. Oliver y F.R. Brotzen, J. Mater. Res. 7 (1992) 613-617. doi:10.1557/JMR.1992.0613

[6] W.C. Oliver y G.M. Pharr, J. Mater. Res. 19 (2004) 3-20. doi:10.1557/jmr.2004.19.1.3

[7] R. B King, Int. J. Solids Struct. 23 (187) 1.657-1.664.

[8] J. Woirgard y J-C. Dargenton, J. Mater. Res. 12 (1996) 2.455-2.458.

[9] M. Troyon y L. Huang, J. Mater. Res. 20 (2005) 610-617. doi:10.1557/JMR.2005.0099

[10] J.M. Meza, M.C. Moré, R.M. Souza, y J. Cruz, Mater. Res. 10 (2007) 437-447. doi:10.1590/S1516-14392007000400019

[11] A. Bolshakov y G.M. Pharr, J. Mater. Res. 13 (1998) 1.049-1.058.

[12] G.M. Pharr, Instrumented indentation testing, Vol. 8, ASM Handbook, Mechanical Testing and Evaluation, 2000. pp. 231-242

[13] A.C. Fischer-Crips, Nanoindentation, Ed. Springer, New York, EE.UU. Primera edición, 2002, pp. 71 y 198.

[14] M.R. Vanlyingham, J. Res. Natl. Inst. Stand. Technol. 108 (2003) 249-265.

[15] K.W. Mcelhaney, J.J. Vlassak, y W.D. Nix, J. Mater. Res. 13 (1998) 1.300-1.306.

[16] G.S. Kino, Acoustic Waves: Devices, Imaging & Analog Signal Processing. Prentice-Hall, New York, EE.UU. 1987, pp. 1-84.

[17] W.P. Mason, Physical Acoustics, Academic Press, Volume 1, New York, EE.UU., 1964, pp. 72-76

[18] E.E. Franco, M.A.B. Andrade, R.T. Higuti, J.C. Adamowski, y F. Buiochi, Proc. Int. Cong. Mech. Eng. COBEM-18, Ouro Preto, MG - Brazil, 2005.

[19] J. Wu, J. Acoust. Soc. Am. 99 (1996) 2.871- 2.875.

[20] Industria e comercio. Brasimet. Propiedades de revestimientos durotin. http://www.brasimet.com.br/durotin/tin1.jpg, 2006.

[21] H.E. Exner, Physical Metallurgy: Qualitative and quantitative surface microscopy metallurgy. Robert Canh y Peter Haasen (Eds.), Elsevier Science, Noruega, 1992, pp. 945-947.

[22] D. Tabor, The Hardness of Solids, Clarendon Press, Oxford, 1951, pp. 14-16.

[23] G. Krauss, Steels: heat treatment and processing principles. Materials Park, OH, Ohio: ASM International, 1990, pp. 210-220.

[24] A.C. Fischer-Cripps, Surf. Coat. Technol. 200 (2006) 4.153-4.165.

[25] J. B. Quinn y G.D. Quinn, J. Mater. Sci. 32 (1997) 4.331-4.346.

[26] V. Domnich y. G. Gogotsi, App. Phys. Lett. 76 (2000) 2.214-2.216.

[27] K.D Bouzakis, N. Michaidili, S. Hadjiyianni, Skordaris y G. Erkens, J. Mater. Char. 49 (2003) 149-156.doi:10.1016/S1044-5803(02)00361-3

[28] N.J.M. Carvalho, Tesis Doctoral, Universidad de Groningen, Noruega, 2001

[29] M. Zhang y J. He, Surf. Coat. Technol. 142 (2001) 125-131. doi:10.1016/S0257-8972(01)01221-X

Downloads

Published

2008-02-28

How to Cite

Meza, J. M., Franco, E. E., Farias, M. C. M., Buiochi, F., Souza, R. M., & Cruz, J. (2008). Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials. Revista De Metalurgia, 44(1), 52–65. https://doi.org/10.3989/revmetalm.2008.v44.i1.95

Issue

Section

Articles