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Effect of nitrogen ion implantation on in vitro corrosion behaviour
of NiTi¢")

R. Barcos”, A. Conde™, J. J. de Damborenea™ vy J. A. Puértolas”

In the last decade, different surface modifications have been developed to enhance the biocompatibility of NiTi shape
memory alloys. The present paper deals with the influence of nitrogen ion implantation on corrosion behavior of
NiTi in Hank’s solution. Nitrogen implantation at 150 keV with nominal doses ranged from 0.5x10'7 to 8x10'7 ion
were used. Mechanical surface characterization was carried out by nanohardness, corrosion mechanism evaluation
by electrochemical polarization and impedance spectroscopy (EIS) tests and surface composition by XPS spectra.
The results point out the benefit of the N-implanted for corrosion resistance at a suitable dose 2x10!7 ion cm™ and
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an increase of the mechanical properties with the doses.
Keywords NiTi; Corrosion; lon implantation; Nanohardness; N-implantation.

Efecto de la implantacién i6nica de nitrégeno en el comportamiento frente
a la corrosion in vitro del NiTi

Resumen

Durante la pasada década se han empleado diferentes técnicas de modificacién superficial para mejorar la biocompa-
tibilidad de la aleacién de NiTi con memoria de forma. Este trabajo se centra en el estudio de la influencia del N
implantado con una energfa de 150 keV y con dosis nominales comprendidas entre 0.5x10!7 to 8x10!7ion cm™, en
el comportamiento frente a la corrosién del NiTi en solucién de Hank. Se han realizado medidas de nanodurezas y de
resistencia a la corrosién mediante curvas de polarizacién potencio-dindmicas y espectroscopia de impedancia elec-
troquimica, asi como los cambios en composicién promovidos en la superficie se evaluaron mediante XPS. Los resul-
tados de dichos ensayos revelaron una mejora en la resistencia a corrosién del comportamiento para las muestras im-

plantadas con una dosis de N de 2x10-17 ion-cm™ y un aumento de la nanodureza y de la rigidez superficial con la do-

sis implantada

Palabras clave

1. INTRODUCTION

Properties of the shape memory alloy NiTi, such as
one and two-way shape memory effect, superelasticity,
anelasticity, constant unloading stresses have been
proposed for various applications in different fields
in industry. These mechanical properties, in
combination with the biocompatibility allow the use
of NiTi in different devices in medicine!!l. However,
despite the excellent corrosion resistance, Ti and Ni
ion release into the adjacent tissue in some biological
environments might have detrimental effect. As a
consequence a harmful local and systemic effect can
occur for some patients. Many methods have been

NiTi; Corrosién; Implantacién iénica; Nanodureza; Nitrégeno.

tested to improve the TiO, oxide layer and other to
modify the reactivity of surface, with different
successi?l. In the first via, several techniques include
the oxygen introduction in the surface like thermal
oxidationP!, hydrothermal method™, sol-gel
deposition®), plasma source ion implantation!® or
plasma immersion ion implantationl? 228,

Among the several methods to mitigate the
leaching of Ni, one of the most widespread is the
coated technology based on titanium nitride, TiN.
This thin film have been grown by laser gas
nitriding[g], powder immersion reaction assisted
coating!'? or magnetron sputtering!'!l. However, all
the above mentioned methods introduce discontinuity
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in the properties as consequence of the interface
between bulk and coating. Direct implantation of
nitrogen!!! or plasma immersion ion implantation
(PIII)[13 and 14l haye been used in the last years as a
method to get a graded compositional change in the
surface and a better adhesion behavior compared
to coating technologies. In spite of these studies,
several aspects are still controversial, like the
influence of the nitrogen beam doses in corrosion
resistance, the presence of nickel depletion or the
chemical state of the surface after the ion
implantation. Concerning to the first point, Arenas
et al. ] pointed out the existence of an optimal doses
of nitrogen implantation for enhancing the corrosion
behaviour of the titanium in simulated body fluid.
From the previous experience on titanium alloys, in
this work the authors have evaluated the influence
on mechanical and corrosion properties of NiTi alloys
with biomedical interest, establishing the optimal
dose to combine improvements in hardness and
corrosion resistance.

2. MATERIALS AND METHODS

The equiatomic nickel-titanium alloy was received
from Memory Metalle GmbH (Weil am Rhein,
Germany) in plates of 1 mm thickness with an
amount of trace elements less than 0.1 wt%. The
transition temperature between martensite « austenite
is below the ambient temperature. In consequence,
the alloy presents superelasticity at temperatures
during the microhardness and corrosion test. Disk
samples of 20 mm in diameter were cut by
electrochemical process from the plate and
mechanically polished with 600-1,200 SiC grits and
with dispersions of diamond microparticles, with a
final average roughness of R, =101 # 45 nm, measured
with a PLm2300 Optical Imaging Profiler from
Sensofar-Tec (Spain).

Nitrogen implantation was performed using a
Whickham Ion Beams Systems as ion generator. The
acceleration voltage was 150 keV, with nitrogen
dosages of 0.5, 1, 2, 4 and 8 x10!7 ions cm™2, which
will be designated in the text as 105, 11, 12, 14, I8

respectively and NI for as-received sample. Program
PROFILE has been used to obtain the theoretical
profiles of the ionic implantation by means of the
standard and high doses code. The last method
provides a more realistic profile with a depth region
close to 125 nm for the highest doses. The amount
of nitrogen implantation was ranged from 30 % at
the lowest doses to 45 % at the highest ones.
Electrochemical studies were performed in Hank’s
solution (Table I) at pH 7.4 prepared from chemically
pure reagents and deionized water. In order to avoid
crevice corrosion an appropriate tape was used to
mask the NiTi, allowing 1 cm? of its surface to be
in contact with solution. All electrochemical
measurements were performed at room temperature.
Corrosion mechanisms were evaluated by
electrochemical impedance spectroscopy (EIS) and
electrochemical polarization curves using a
conventional three-electrode cell containing 100 ml
of Hank’s solution. A saturated calomel electrode was
used as the reference electrode, and 1 cm? of
implanted and non implanted NiTi as working
electrode with a platinum counter electrode.
Unimplanted specimens were mechanically polished
before testing. The polarization curves were performed
after 30 min of stabilization of the open circuit
corrosion potential, while the impedance
measurements were carried out up to 96 h of testing
in the experimental solution. Both tests were
performed at different locations of the specimens.
The electrodes were connected to a Radiometer
Copenhagen PGP201 potentiostat. After stabilization
of the corrosion potential (potential variation lower
than 2 mV/min) a cathodic potential step was applied
to leave the samples at -1000 mVvs. SCE. Then,
potentiodynamic polarisation curves were performed
in the anodic direction at a sweep rate of 0.3 mV/s.
Impedance data were obtained through a
computer controlled frequency response analyser
Solartron SI-1255 and electrochemical interface
Solartron SI-1287. A 10 mV (rms) sinusoidal
potential was applied, with a frequency sweep from
20 kHz to 10 mHz.
Nanohardness measurements were performed
using a Fischerscope® H100VP-XP PROG testing

system, from Fischer Instrumentation Ltd. By

Table I. Electrolyte composition of Hanks’ solution (pH=7.4)

Tabla I. Composicion quimica de la solucion de Hank (pH= 7,4)

Compound CaCl, MgSO,7H,0 KH,PO, NaCl Na,HPO, d-Glucose Phenol Red.Na NaHCO, KCI
Concentration (gl 0.140 0.148 0.06 8.0 0.048 1.0 0.011 0.35 04
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progressively increasing the applied load from 2 to
100 mN, this technique allows the determination of
hardness depth profile. The hardness values have
been determined from characteristic load-displace-
ment curves according to DIN-50359.

XPS spectra were acquired with a VG-CLAM
analyser in a high vacuum using a magnesium anode
((Kow 1253.6 eV), working at 15kV, 20 mA and using
an argon ion acceleration of 5 KeV. The direction of
the photoelectron detection angle was 90 with the
specimens. Broad scan spectra were made using an
energy step of 150 eV, while narrow scans were
performed of C 1s, Ti 2p, N 1s, Ni 2p and O 1s were
determined using a scanning step size of 20 eV. All
XPS spectra have been referenced to the C 1s line of
the hydrocarbon-type carbon (284.8 eV).

3. RESULTS AND DISCUSSION

Nanohardness depth profiles in all the implanted
samples are depicted in figure 1. The as-received
sample, NI, exhibits practically a constant value close
to 2.5 GPa. The surface modification introduced
by nitrogen ion implantation induces mechanical
changes, since the hardness profile of the treated
surfaces indicates higher hardness than the substrate
beneath. However, the influence of the doses is low,
with a smooth increase of the hardness surface when
the dose increases. In addition, the hardness profile
of these treated samples shows a maximum in a
subsurface region around 25 nm in depth, especially

1 M
A
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Figure 1. Nanohardness in function of the depth
for NI, 12, 14 and 18 samples.

Figura 1. Perfil de nanodureza de las muestras
NI, 12, 14 e I8.

patent in I8 sample. Although in these implanted
samples, the measurements do not reflect the full
region affected by the implanted N*, since the applied
load is not too high, at least a modify layer of 90
nm is observed. On the other hand, the Young’s
modulus in the non implanted sample, deduced from
the load-indentation curves, is ranged in 58-65 GPa
and the stiffness of the layer surface increases after
ion implantation up to values ranging in 68-72 GPa.

The values of hardness and stiffness found in NiTi
samples before the modification surface are similar
to de values of hardness and Young modulus reported
for the same NiTi substrate by Cheng et al.l’1 3.5 GPa
and 85.6 GPa [Mand Poon et al.!'3], 4 GPa and 55-60
GPa, respectively.

The first effect caused by the N* ion implantation
is the increase of these magnitudes. So, the hardness
of the sample subjected at the maximum doses
achieves values close to 5.1 GPa in our measurements,
which are also consistent with the average value of
hardness in the affected region of NiTi samples treated
by nitrogen PIII on the same NiTi alloy at a dose of
9.6:1% jons cm2 131, These results are in agreement
with others reported in the literature, in which and
in general, high dose ion implantations of nitrogen
on different alloys seem to improve the mechanical
and tribological properties of the surfacel16-18l,

Although the effect of ion implantation doses is
always positive regarding the mechanical features,
the influence of the doses is critical in corrosion
resistance.

Polarization curves of NiTi alloys in Hank’s
solution revealed a similar shape for both un-
implanted and implanted specimens. The polarisation
curves depicted in figure 2 showed that none of the
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Figure 2. Polarization curves for NI, 12, |14 and
I8 specimens.

Figura 2. Curvas de polarizacion de las mues-
tras NI, 12 e I8.
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tested materials exhibit the traditional active-passive
transition because they are in a passive state prior to
be tested. In the same line, they do not exhibit a
breakdown potential or pitting potential in the range
of potentials sweep. In fact the abrupt increase of
current density when reaching 1 V vs.SCE has to be
attributed to oxygen evolution. Therefore, all NiTi
samples are passive and no evidence of pitting has
been found in any condition.

In spite of the similarity in the polarization curves,
some differences appear in the corrosion potentials
and passive current densities (Figure 2). Non
implanted specimens showed a current density of
4-10"8 Acm2. Similar values were reported by Cissé
et al.' on mechanically polished NiTi. On the other
hand, it has been appreciated that at the highest doses
(4 x 1017 and 8 x1017 ions cm™?%) the corrosion
resistance decreases substantially, while at the lowest
doses (0,5, 1 x10'7 and 2 x 10!7 jons cm™) there is
an improvement with respect to the un-implanted
alloy. In fact, when the implanted dose is < 2 x 1017
ions cm™ the current density found was about 5-10~
Acm™2, almost one order of magnitude lower than
that obtained for NI2%, For this reason and in order
to clarify the presentation of the data, hereinafter
only samples in the range from 2-8 x 10!7 jons cm™
were studied, i.e., referred hereafter as 12, 14 and 18
samples.

It is also interesting to note that the corrosion
potential defined by the polarisation curves for NI
and I2 sample are the same (around —275 mV vs.
SCE). Althought, the implanted specimen depicted
another pseudo-corrosion potential at =85 mV vs.
SCE. This peak would indicate an activation state
in which the surface is being oxidized and
consequently a film is formed on the NiTi surface
promoting its passivation. On the contrary, higher
doses provoked appreciable decreases in the corrosion
resistance of the NiTi alloy (3:107and 2:10° Acm™
for 14 and I8, respectively) as well as a corrosion
potential more active for the implanted specimens
with highest dose (435 mV vs. SCE).

The reason for this behaviour could be that the
high energy beam together to high doses during ionic
implantation could induce damage on the NiTi
surface. Due to the high density flux, the surface could
become more chemically active (crystalline damage)
leading to lowered corrosion resistancel’l. The
authors observed this effect working with lower
nitrogen ions of energy, 25keV, pointing that the
optimum dose from corrosion viewpoint is about
3-10'7ions cm™2. In this work none of the doses
studied lead to significant improvements, suggesting
that higher energies of implantation can produce a
deleterious effect instead of an improvement on

the corrosion resistance properties. In this sense
Sharkeev et al.12!) reported that doses higher than 3
x 10 jons cm™? (implanted at energy of 90 keV)
could lead to a softening of the surface.

Electrochemical impedance spectroscopy has also
been used to characterise the NiTi surface after
implantation. Figure 3 shows the impedance spectra
for NI and I2-I8 specimens after 3 hours of immersion
in Hank’s solution. As it can be seen, 12 exhibits a
pure capacitive response which is characterised by
phase angle about 90 © at whole frequency range. A
time constant is observed in Bode plots. Moreover,
the value of the impedance modulus at low
frequencies, 10 mHz, is about 10° Q cm?. On the
other hand, NI and I8 reveal a resistive behaviour
with lower values for /Z/, ., , than for I2 implanted
specimen. Finally, the specimen implanted with a
intermediate doses, 14 plots two time constant
revealing the presence of a diffusion tail at lower
frequencies. Therefore, the results from the EIS
impedance are consistent with those obtained from
DC current and as well as it was shown the specimen
implanted with the lowest doses improved the
corrosion resistance nearly by one order of magnitude
regarding the NI, whilst the implantation with
medium and highest doses are detrimental from
corrosion point of view.

Nevertheless, at longer immersion times, 96 h, some
changes are observed for NI, [4 and I8. While the
spectra for 12, hardly evolves with immersion time,
the specimens that initially had worst corrosion
resistance improved their corrosion resistance as
consequence of a thickening of the titanium oxide
layer. In figure 4 are plotted the impedance spectra
corresponding to 14 (as representative behaviour of
medium-high dose implanted specimens) compared
with NI, after 96 hours of immersion. After 96 hours,
all the specimens plot the same values for /Z/ o 1.
about 5-10° Q-cm?. This result is quite remarkable
because it reveals that nitrogen implantation with the
optimal dose allows to reach an excellent corrosion
resistance slowing down the growth of titanium oxides
and avoiding the risks derived from its growth in excess.

In spite of the chemical activity induced by ion
implantation suggested, other authors assume that
other possible reasons for such loss los corrosion
resistance could be the presence of new compounds
in the surface, which might alters the passivation
layer of TiO,. In order to explain these assessment
XPS spectra were performed.

The high resolution spectra of titanium, oxygen
and nitrogen corresponding to 12, 14 and I8 specimens
are plotted in figure 5a, 5b and 5c, respectively.
Additionally, the binding energies obtained after the
fitting process of each element are gathered in tables
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Figure 3. Impedance measurements after three h in Hank’s solution for NI, 12, 14,and I8.

Figura 3. Espectros de impedancia de las muestras NI, 12, 14 e 18 tras 3 h de inmersion en solucion de

Hank.
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Figure 4. Comparison of impedance spectra for NI, 14 after 96 h in Hank’s solution.

Figure 4. Comparacion de los espectros de impedancia de NI, e |4 tras 96 h de inmersion en solucion

de Hank.
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Figure 5. XPS spectra of a) Ti 2p, b) O 1s and ¢) N 1s for 12, 14 and 18 samples.

Figura 5. Espectro de XPS. a) Ti 2p, b) O 1s y c) N 1s, para las muestras 12, 14 e 8.

Table Il. Oxygen spectra for 12, 14 and 18 specimens

Tabla Il. Espectro del oxigeno correspondiente a las muestras 12, 14 e I8

O1s 12 14 I8 Chemical Bond
O, (eV) 530.3 530.8 530.5 TiO, (Ti**)
O, (eV) 531.3 532.0 531.5 Ti-O

Table lll. Titanium spectra for 12, 14 and 18 specimens

Tabla lll. Espectro del titanio correspondientes a las muestras 12, 14 e 18

Ti 2p (10min) 12 4 18 Chemical Bond Theoretical B.E.
Ti, (eV) 455.2 455.2 455.0 TiN 455.0 (2p%?)
Ti, (eV) 456.6 456.7 456.5 Ti-O-N 456.3
Ti, (eV) 458.4 458.4 458.4 TiO, 458.7 (2p®?)
Ti, (eV) 461.2 461.1 460.9 TiN 461.0 (2p'?)
Tis (eV) 463.7 463.9 462.9 TiO, 464.0 (2p'?)
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Table IV. Nitrogen spectra for 12, 14 and I8 specimens

Tabla IV. Espectro de nitrogeno correspondiente a las muestras 12, 14 e 18

N 1s 12 14 18 Chemical bond Theoretical B.E.
N, (eV) 396.6 396.9 396.8 TiN 396.7
N, (eV) 398.7 398.3 397.4 Ti-O-N 398.1

[I- IV for any evaluated samples. From high resolution
windows of each element, it is observed that the for
all doses, the surface is composed of titanium oxides
and titanium nitrides

Profile concentrations of each element, O 1s, C
Is, Ti 2p, N 1s and Ni 2p, in function of the sputtering
time is plotted in figure 6. It reveals that for all the
sputtering times N content is higher than Ni,
suggesting the presence of an outer TiN layer. One
of the main results is concerning to the Ni content
(Fig. 7), which is notably reaching after 10 minutes
a concentration of Ni which remains practically
constant up to 20 minutes of sputtering.

The analysis revealed that NiTi specimens
implanted with different doses of N* are mainly
composed of titanium nitride, TiN, and rutile, TiOzy

together with some titanium oxynitrides and non
stoichiometric oxides appeared as result of the
changes induced by the sputtering with argon.
Titanium oxides are placed in outer layers whereas
TiN is placed underneath, since oxygen concentration
decreases with the sputtering time as well as nitrogen
concentration increases, figure 0.

Concerning to the Ni composition, the XPS
spectra point out the strong variation of the nickel
with the time of sputtering, since at time a less
than 2 minutes the concentrations practically are
negligible. Similar trend were described by Wever et
al.22 who observed that Ni was hardly resolved in
outer layers of implanted specimens. However, in
their case the Ni content increased up to 25 % at.
after 10 minutes of sputtering with an argon ion
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Figure 6. XPS Profile concentration of each element versus sputtering time for a) 12, b) 14, and c) 8.

Figura 6. Perfil de concentracion de cada elemento correspondiente a las muestras a) 12, b) 14 y c) 18.
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Figure 7. Ni concentration for 12, 14 and I8 sam-
ples versus sputtering time.

Figura 7. Perfil de concentracion de Ni corres-
pondiente a las muestras, 12, 14 e 18.

acceleration about 10 KeV —double than used in this
work—. Conversely, Ni contents as low as those
described in this work were also sound by Z. D. Cui
et al.”) for NiTi laser nitride specimens, where Ni
contents about 2.5% at. were found after 30 minutes
of sputtering. This behaviour seems to be a
consequence of the preferential growth of a TiN layer
rather than the less stable nickel nitride. The higher
affinity of the nitrogen to titanium seems to be the
cause of the nickel segregation, leading to the
formation of TiN which chemical bond is stronger
than Ni;N 131

On the other hand, the profile of Ni concentration
depends on the N* dose used during the implantation
(see Figure 7). The higher nitrogen dose, the higher
Ni increase. This behaviour suggests that when the
implantation is carried out with the highest dose,
there is an additional effect of sputtering, removing
the outer oxide layers and leaving the areas with
higher nitrogen content and the alloy more exposed.
This result agrees with the lower and higher content
of oxygen and nitrogen, respectively, described in I8
sample with respect to the specimens implanted with
lower doses. Whereas the oxygen atomic percentage
ranges about 50-60 % at for 12 and 14 specimens after
20 min of sputtering, it is about 38 % at. for the
sample I8, implanted with 8:10'7 ions cm2. Similarly,
nitrogen content is about 11% at. for the first two
samples and about 20% at. for the specimen I8. As
result of this, Ni content varies from 2.4 and 4.8 %
at. for samples treated at 2-10!7 ions cm~% and 4-10'7
ions cm™, respectively, while for the highest doses,
8:1017 ions cm™2, the Ni content is 6.8%.

This behaviour it is also clearly revealed by the
titanium and oxygen spectra, figure 5, where the
intensity of the peaks of these two elements

corresponding to the implanted samples are
compared. It is clearly revealed that for the specimen
treated with the highest N* dose, I8, the oxidised
compounds decrease, revealing a lower content than
those corresponding to specimens [2 and [4.

4. CONCLUSIONS

Nitrogen ion implantation induces improvements in
nanohardness and Young modulus with the doses,
while corrosion resistance improves just when the
optimum dose is used. In this condition either DC or
EIS, revealed improvements in corrosion properties
about one order of magnitude with respect to
unimplanted samples. These improvements rely on
the presence of a stable outer titanium oxide layer in
addition to TiN layer placed underneath. Conversely,
higher doses turn the surface more chemically active
as it is revealed by the increase of corrosion current
density and the shift of the corrosion potential
towards more cathodic values. This higher activity
it is also revealed by the evolution of impedance
measurements. Surfaces evolves reaching values of
impedance as high as those initially described by the
optimal dose implanted specimens, as consequences
of the thickening of the oxide layer after 96 hours of
test in Hank’s solution.

Acknowledgments

Research funding by the Fondo de Investigaciones
Sanitarias (FIS), Spain. Projects: PI031287, PI040364.

REFERENCIAS

[1] T. Duering, A. Pelton and D. Stockel, Mater.
Sci. Eng. A-Struct. 273-275 (1999) 149-160.

[2] S.A. Shabalovskaya, Bio-Med. Mater. Eng. 12
(2002) 69-109.

[3] R.W.Y. Poon, J.PY. Ho, X.Y. Liu, C.Y. Chung,
PK. Chu, K.W.K. Yeung, W.W. Lu and K.M.C.
Cheung, Mater. Sci. Eng A-Struct. 390 (2005)
444-451.

[4] ET. Cheng, P. Dhi and H.C. Man, Surf. Coat.
Technol. 187 (2004) 26-32.

[5] J.X. Liu, D.Z. Yang, E Shi and Y.]J. Cai, Thin
Solid Films 429 (2003) 225-230.

[6] L. Tan, R.A. Dodd and W.c. Crone, Biomate-
rials 24 (2003) 3931-3939.

[7] Y. Cheng and Y.E Zheng, Mat. Sci. Eng A-
Struct. 434 (2006) 99-104.

REV. METAL. MADRID, 44 (4), JULIO-AGOSTO, 326-334, 2008, ISSN: 0034-8570 333



R. BARCOS, A. CONDE, J. J. DE DAMBORENEAY J. A. PUERTOLAS

(8]

9]
[10]
[11]
[12]

[13]

[14]
[15]

334

R.W.Y. Poon, ]J.P.Y. Ho, X. Liu, C.Y. Chung,
PK. Chu, K.W.K. Yeung, W.W. Lu and K.M.C.
Cheung, Nucl. Instr. and Meth. in Phys. Res. B
237 (2005) 411-416.

Z.D. CUI, H.C. MAN and X.J. YANG, Appl.
Surf. Sci. 208-209 (2003) 388-393

D. Starovsetsky and I. Gotman, Surf. Coat.
Technol. 148 (2001) 268-276.

Y.Q. Fu, H.J. Duand S. Zhang, Mater. Lett. 57
(2003) 2995-2999.

H. Pelletier, D. Muller, P. Mille and ].J. Grob.
Surf. Coat. Technol., 158-159 (2002) 301-308.
W.Y. Poon, J.P.Y. Ho, X. Liu, C.Y. Chung, PK.
Chu, K W.K. Yeung, W.W. Lu, KM.C. Cheung,
Thin Solid Films 488 (2005) 20-25.

N. Shevchenko, M.T. Pham, M.E Appl. Surf.
Sci. 235 (2004) 126-131

M.A. Arenas, T.]. Tate, A. Conde and J. de
Damborenea, Br. Corros. J. 35 (2000) 232-236.

[16]
[17]
[18]
[19]

(20]

[21]

(22]

O. Orturk, O. Onmus and D. L. Williamson,
Surf. Coat. Technol. 196 (2005) 333-340.

M. Soukieh, Radiat. Eff. Defect S 159 (2004)
73-79.

G.S. Lakshmi and D. Arivuoli, Tribol. Int. 39
(2006) 548-552.

O. Cissé, O. Savadogo, M. Wu and L. H. Yahia,
J. Biomed. Mater. Res. A 61 (2002) 339-345.
A. Conde, J. Pascual, ]J. de Damborenea and
J.A. Puértolas. II Cong. Ibérico de Biomateriales,
BIOEvora, 2004

Y.P. Sharkeev, S.]. Bull, A.]. Perry, M.L.
Klingenberg, S.V. Fortuna, M. Michler, R.R.
Manory and [.A. Shulepov, Surf. Coat. Technol.
201 (2006) 5915-5920

D.]. Wever, A.G. Veldhuizen, ]. de Vries, H.].
Busscher, D.R.A. Uges and J. R. van Horn.
Biomaterials 19 (1998) 761-769.

REV. METAL. MADRID, 44 (4), JULIO-AGOSTO, 326-334, 2008, I1SSN: 0034-8570



