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ABSTRACT: The removal of the toxic arsenic(III) from aqueous solutions is investigated using the ion exchange 
technology and the Dowex 1x8 resin. Different experimental variables which may influence the uptake equilib-
rium are considered: stirring speed of the system, temperature, NaOH concentration in the solution, and resin 
dosage. The anion exchange equilibrium is endothermic and non-spontaneous, in the 20 °C - 60 °C range of 
temperatures the metal uptake onto the resin responded to the pseudo-second order kinetic model, however, the 
loading mechanism is temperature dependent in the 20 °C - 40 °C range. The linear fit of the experimental data 
showed that the loading isotherm is best explained by the Freundlich model. The results of arsenic(III) uptake 
in the present system are compared against the metal uptake which one can obtain with other resins and multi-
walled carbon nanotubes. Arsenic(III) loaded onto the resin is eluted by the use of 1M HCl solution. 
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RESUMEN: La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. 
Parte VIII: Arsénico(III))/OH-/Dowex 1x8. En el presente trabajo se utiliza la resina de intercambio aniónico 
para la eliminación de arsénico(III) de medios acuosos. Esta eliminación se ha investigado teniendo en cuenta 
diversas variables experimentales como son: la velocidad de agitación del sistema, la temperatura, el pH de 
la disolución y la dosificación de resina al sistema. El equilibrio de intercambio aniónico tiene un carácter 
endotérmico y no espontaneo, en el rango de temperaturas comprendido entre 20 °C y 60 °C, la cinética del 
proceso responde al modelo de pseudo-segundo orden, sin embargo, el mecanismo de carga del arsénico en la 
resina cambia en el rango de temperaturas comprendido entre 20 °C y 40 °C. La isoterma de carga del metal en 
la resina responde al modelo linearizado de Freundlich. Se comparan los resultados de carga de arsénico en la 
resina Dowex 1x8 con los obtenidos con otras resinas y con nanotubos de carbono de pared multiple. La elución 
del arsénico se puede realizar con disoluciones acidas, por ejemplo 1 M HCl.
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1. INTRODUCTION

Though it has several industrial uses and even is 
necessary for life, arsenic is often related to murder 
(Emsley, 2005). In any case, arsenic is a toxic ele-
ment and the need of the removal of its compounds 
from waters is of a paramount importance.

Arsenic is present at various oxidation states and 
in the form of inorganic and organic compounds, 
thus, the relative toxicity of arsenic compounds 
depends on:

 i) inorganic or organic forms
 ii) oxidation state
 iii) others

The hazardousness of  arsenic compounds is 
diverse, generally speaking, arsenic compounds can 
be ranked as:

 i) inorganic arsenic(III)
 ii) organic arsenic(III)
 iii) inorganic arsenic(V) 
 iv) organic arsenic(V)

Upon ingesta, arsenic compounds are respon-
sible of different diseases including cancer, being 
estimated that millions of persons are in the poten-
tial risk of arsenic ingesta from waters, even Spain 
is one of the countries in which arsenic toxicity has 
occurred from natural source contamination of well 
water (Hughes et  al., 2011; ATSDR, 2013; Flora, 
2015; Yousefsani et al., 2017).

From the various separation methodologies, 
it appears that ion exchange/adsorption is one 
of  the most widely used procedure for arsenic 
removal from waters (Ahmad et  al., 2017; Inaba 
et  al., 2017; Mal’tseva et  al., 2017; Roy et  al., 
2017; Schouwenaars et al., 2017; Sert et al., 2017; 
Tavakkoli et al., 2017; Babaee et al., 2018; Kang 
et  al., 2018; Liu et  al., 2018; Venkatesan and 
Narayanan, 2018). 

Next in the series of articles published in this 
Journal focusing in the use of ion exchange technol-
ogy in the removal of toxic metals (Alguacil et  al., 
2002; Alguacil, 2002; Alguacil, 2003; Alguacil, 2017a; 
Alguacil, 2017b; Alguacil, 2018a; Alguacil 2018b), 
the present work uses the anionic exchange resin 
Dowex 1x8 in the removal of arsenic(III) from aque-
ous solutions. Several theoretical models were used 
to fit the experimental data for a better knowledge of 
the ion exchange process.

2. EXPERIMENTAL

Dowex 1x8 (Fluka) has the characteristics shown 
in Table 1. Other resins and chemicals used in the 
investigation are of AR grade. The multiwalled 
carbon nanotubes (MWCNTs) present the next 

characteristics: carbon content > 98%, outer diam-
eter: 10 nm ± 1 nm, inner diameter: 4.5 ± 0.5 nm, 
length: 3–6 μm) (Alguacil et al., 2016). 

 The batch (loading and elution) experiments 
was carried out in a glass reactor, the mixture aque-
ous solution-resin was stirred (four blades glass 
 impeller) at 500 rpm and 20 °C, except when these 
variables were investigated.

Arsenic in solution was analysed by ICP, whereas 
metal loads in the resin was calculated by the mass 
balance.

3. RESULTS AND DISCUSSION

3.1. Arsenic uptake onto the resin

To understand the exchange process, a distribu-
tion of arsenic species in solution versus pH is gener-
ated using the MEDUSA program (Puigdomenech, 
2018). This distribution is shown in Fig. 1, from pH 
0 to pH near 9.5, the neutral specimen As(OH)3 or 
H3AsO3 is predominant, whereas the anionic As(III) 
species become progressively dominant from pH 
9.5 to pH 14. Thus, this alkaline pH range is the 
one to be investigated when an anionic exchanger, 
as Dowex 1x8, is used to remove arsenic(III) from 
aqueous wastes. And the above is corroborated by 
previous experiments performed with this resin in 
the pH 1–8 range, resulting in the no-removal of 
arsenic(III) from the aqueous solutions.

Table 1. Characteristics of Dowex 1x8 resin

Active group quaternary ammonium salt in chloride form

Matrix styrene-divinylbenzene

Particle form 
and particle size

Spheres, 50–100 mesh (300–150 μm)

Figure 1. Distribution of arsenic(III)  
species with the aqueous pH.
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Then, at these alkaline pH values, arsenic(III) 
loads onto the resin via an anion exchange mecha-
nism, such as:

 

AsO OH + R N Cl

R N AsO OH +Cl

4
+

r

4
+

s

( )

( )

− ⇔ 

−  

− −

− −

2s

2r
 (1)

where, the subscripts s and r refer to the aqueous 
solution and resin phases, respectively, and ]- to the 
non-reactive matrix of the resin. 

In these batch experiments, the investigations 
about the influence of the stirring speed on metal 
uptake in these ion exchange/adsorption systems 
are of a paramount importance, because, with this 
parameter one can find a minimum in the thick-
ness of the aqueous film and thus a maximum in 
metal uptake onto the resin /adsorbent is reached. 
The experiments are carried out using aqueous 
solutions of 0.01 g·L−1 As(III) at pH 12 and resin 
doses of 10 g·L−1. The stirring speed of the system is 
varied between 250 and 1200 rpm. The results from 
these experiments are shown in Table 2. It can be 
seen that the metal uptake reaches a maximum at 
500 rpm, and then decreases, this is probably due to 

local equilibria between the solution and the resin 
particles which decrease the corresponding arsenic 
uptake. The experimental data also indicated that 
3 hours are time enough to achieve equilibrium. 

The influence of the temperature on arsenic(III) 
uptake onto the resin is next investigated using the 
same aqueous solution and resin dosage than above. 
The results from this investigation are shown in 
Table 3, it can be seen that the metal uptake increases 
with the temperature indicating an endothermic 
reaction, with the plot of log D values against the 
temperature, one can estimate the corresponding 
values of ΔH° = 98 kJ·mol−1, ΔS° = 320 J·mol−1 K 
and ΔG° = kJ·mol−1 for the present system, whereas 
D, the distribution coefficient of arsenic between 
the resin and the aqueous solution, is defined as:

 
( )
( )

 
 

D =
As III

As III
r,e

s,e

 (2)

being [As(III)]r,e and [As(III)]s,e the arsenic concen-
trations in the resin and in the solution at equilib-
rium, respectively.

The above figures suggested that the metal uptake 
onto the resin is not spontaneous and that the load-
ing process increased its randomness.

In the 20 °C–60 °C temperature range, the experi-
mental data fit well with the pseudo-second order 
kinetic model (Akartasse et al., 2017):

 
[ ] [ ] [ ]
t
As

= 1
k As

+ 1
As

t
r,t r,e

2
r,e

 (3)

with the data shown in Table 4. In the above equa-
tion, [As]r,t and [As]r,e are the arsenic concentra-
tions in the resin at a time t and at the equilibrium, 
respectively, t is the elapsed time and k is the rate 
constant. 

Also, it was investigated the probable mecha-
nism from which arsenic(III) was loaded onto the 
resin, the results from this fit showed that at 20 °C, 
the particle-diffusion controlled model (López 
et al., 2014):

 ln(1−F2) = −kt (4)

best responded to the experimental data, how-
ever  in the 40 °C–60 °C range, the experimental 

Table 2. Arsenic(III) uptake at various stirring speeds

Stirring speed (rpm) As(III) uptake (mg·g−1)

250 0.52

375 0.57

500 0.62

750 0.58

1000 0.50

1200 0.48

Temperature: 20 °C; Time: 3h

Table 3. Arsenic(III) concentrations in the solution  
and the resin at various temperatures

T, °C [As(III)] (mg·L−1) [As(III)] (mg·g−1) D

20 3.9 0.62 0.16

40 0.4 0.96 2.4

60 0.05 0.99 19.8

Aqueous phase: 0.01 g·L−1 As(III) at pH 12; Resin dosage: 
10 g·L−1; Time: 3 h

Table 4. Experimental data fit on the pseudo-second order kinetic model

Temperature, °C
K  

(g·mg−1·min−1)
[As]r,e (mg·g−1)  

model
[As]r,e (mg·g−1) 
experimental r2

20 0.35 0.63 0.62 0.9998

40 0.094 1.0 0.96 0.9955

60 0.096 1.1 0.99 0.9969
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data best fit to the moving-boundary process 
(López et al., 2014):

 3−3(1−F)2/3−2F = kt (5)

the data from this fit are summarized in Table 5. In 
Eqs. (4) and (5), F is the factorial approach to the 
equilibrium, calculated as the relation between the 
arsenic concentration in the resin at an elapsed time 
and the arsenic concentration in the resin at equilib-
rium, t is the elapsed time and k is the rate constant 
of the corresponding model.

The effect of varying the pH of the aqueous solu-
tion on arsenic(III) uptake onto the resin is investi-
gated by the use of aqueous solutions of 0.01 g·L−1 
As(III) in the 8–14 pH range and resin dosage of 
10 g·L−1. The results show (Table 6) that arsenic(III) 
is loaded onto the resin as the pH of the solution 
increases from 8 to 11, them remains constant in the 
11–12 pH range, and finally falls off to near 12% at pH 
14. These results indicate that (Fig. 1), the As(OH)3 
species is not loaded onto the resin, the negatively 
charged and hydrogen-containing arsenic(III) species 
are loaded onto the resin and the non-protonated 
AsO4

3− species is not loaded onto the resin. Taking 
into account the fraction of each of the arsenic spe-
cies presented in the aqueous solution at pH values 
of 9–14 (Fig. 1), Table 6 also presented the corrected 
percentages of arsenic(III) loaded onto the resin. It 
can be seen, that independently of the presence of 
the AsO(OH)2

− or AsO2(OH)2
− species in the solution, 

the percentage of arsenic(III) loaded onto the resin 
(61–62%) is pH-independent in the 9–14 pH range. 

Several resin dosages are investigated in order to 
evaluate their influence on arsenic uptake onto the 
resin, for these series of experiments aqueous solu-
tions of 0.01 g·L−1 As(III) at pH 12 are put into 
contact with resin concentrations in the 2.5–50 g·L−1 
range. The results of these series of experiments are 
represented in Fig. 2, it can be seen that the percent-
age of arsenic loaded onto the resin increases pro-
gressively as the resin dosage also increases. From 
the above experiments, an adsorption isotherm can 
also be generated by plotting the arsenic concentra-
tion in the resin versus the arsenic concentration in 
the solution at equilibrium, and these data are fitted 
to the Langmuir or Freundlich adsorption models in 
their linear forms. The results from this fit showed 
that the arsenic(III) uptake onto Dowex 1x8 resin 
was best explained by the Freundlich model (Wang 
et al., 2017):

 [ ] [ ]ln As = lnk + 1
n
ln Asr,e F s,e

 (6)

the data from this fit indicated that ln kF is −1.81, 
1/n is 0.97 and r2 0.9831. The Freundlich model 
proposed that the metal uptake is on a heteroge-
neous surface of the metal exchanger/adsorbent. In 
the above equation, [As]r,e and [As]s,e are the arse-
nic concentrations in the resin and in the solution, 
respectively, kF is the Freundlich constant and 1/n is 
a parameter of the equation.

The performance of the present system is com-
pared against other exchangers/adsorbents by the 
use of aqueous solutions of 0.01 g·L−1 As(III) at 
pH 12 and resin dosage of 5 g·L−1. The results from 
these sets of experiments are summarized in Table 7. 

Figure 2. As(III) uptake at various resin dosages.
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Table 5. Influence of the temperature on the  
mechanism of arsenic uptake onto the resin

Temperature, °C Model K (min−1) r2

20 particle-diffusion 0.046 0.9410

40 moving-boundary 0.010 0.9941

60 moving-boundary 0.015 0.9974

Table 6. Influence of the aqueous pH on  
the percentage of arsenic(III) uptake

pH % As(III) uptake % As(III) uptakea

8 <0.1 <0.1

9 23 62

10 53 62

11 61 61

12 62 62

13 52 62

14 12 61
aCorrected values taking into account only the fraction of 
anionic hydrogen-bearing arsenic(III) species in the solution 
(Fig. 1); Temperature: 20 °C; Time: 3 h
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It can be seen, that despite of the nature of resins 
(all quaternary ammonium salts) Ionac SR7, Lewatit 
MP64 and Amberlite 959, no one of the above 
load arsenic(III) at any extent, and that in the case 
of the multiwalled carbon nanotubes this load is 
extremely low. 

3.2. Arsenic(III) elution from the loaded resin

The elution of the arsenic loaded onto the resin 
is considered by changing the pH of the aqueous 
solution, thus, 1 M HCl solutions are used as elu-
ent for the system, and the effect of the temperature 
on the percentage of arsenic released to the aqueous 
solution is given in Table 8 at various temperatures. 
It can be seen, that the increase of the temperature 
increases the percentage of arsenic(III) in the eluate. 

Also the effect of the varying relation of vol-
ume of aqueous solution to resin weight is investi-
gated. The results of these experiments are shown 
in Table  9, showing that from the relationship of 
20 mL·g−1 the percentage of elution is near constant.

It is shown, that hydrochloric acid solutions can 
be effective for the elution of arsenic(III) from arse-
nic-loaded Dowex 1x8 resin. At the same time, the 
resin is regenerated to its original chloride form due 
to the exchange of the arsenic(III) species from the 
loaded resin with the chloride ions from the solution.

4. CONCLUSIONS

 - The hazardous element arsenic(III) can be 
eliminated from aqueous solutions by the use 
of Dowex 1x8 resin from alkaline medium. The 
elimination of the element can be related to an 
anionic exchange reaction, which is dependent 
on the stirring speed of the whole system, with 
best results at 500 rpm, the temperature of the 
process, being this of an endothermic nature 
(ΔH° = 98 kJ·mol−1), and the pH of the solu-
tion (the resin is only effective from pH 9), but it 
only removes the arsenic species AsO(OH)2

− and 
AsO2(OH)2

− from the solution. In the range of 
temperatures 20 °C–60 °C, the kinetics of the 
exchange equilibrium responded well to the 
pseudo-second order model, but the mechanism 
is temperature dependent, at 20 °C the data fit 
to the particle-diffusion model, whereas in the 
40 °C–60 °C range the fit is to the moving-
boundary model. The arsenic(III) loading onto 
the resin is best represented by the Freundlich 
equation.

 - Elution of arsenic(III) from loaded Dowex 1x8 
resin can be accomplished in hydrochloric acid 
medium and is temperature dependent, increas-
ing the percentage of arsenic elution from 20 °C 
to 60 °C (79 to 96% yield, respectively). The 
arsenic concentration factor reached the value 
of 4 after a single contact of the arsenic-loaded 
resin with the eluent. 
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