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ABSTRACT: The removal of cobalt(II) from aqueous solutions by ion exchange with Lewatit TP260 resin was 
investigated. The experimental variables investigated in the present work were: stirring speed (300-1400 min-1), 
temperature (20-60 ºC), pH of the aqueous solution (1-5), resin dosage (0.07-0.5 g·L-1) and the aqueous ionic 
strength. Cobalt(II) was loaded onto the resin by a cation exchange reaction in an endothermic and spontaneous 
process. Metal uptake was defined by the aqueous diffusion rate law and the pseudo-first order kinetic model 
(20 ºC) and the pseudo-second order kinetic model (60 ºC), whereas the experimental results responded well 
to the Langmuir isotherm. Several resins as well as non-oxidized and oxidized multiwalled carbon nanotubes 
were tested in order to compare the uptake results with that of Lewatit TP260, whereas the selectivity of the 
Co(II)-Lewatit TP 260 system was compared against the presence of other cations (Co-metal binary solutions) 
in the aqueous phase. Cobalt(II) can be recovered from metal-loaded resin by the use of acidic solutions (HCl 
or H2SO4). 
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RESUMEN: La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. 
Parte XI: Cobalto(II)/H+/Lewatit TP260. Este trabajo investiga sobre la eliminación de cobalto(II) presente 
en medios acuosos mediante la resina de cambio iónico Lewatit TP260. El sistema se estudia bajo distintas 
condiciones experimentales: velocidad de agitación (300-1400 min-1), temperatura (20-60 ºC), pH del medio 
acuoso (1-5), dosificacion de la resina (0.07-0.5 g·L-1) y fuerza iónica de la disolución acuosa. El metal se carga 
en la resina mediante una reacción de intercambio catiónica en un proceso endotérmico y espontáneo. Esta 
reacción de intercambio se define por un proceso de difusión en la disolución acuosa y el modelo cinético de 
pseudo-primer orden (20 ºC) y el modelo cinético de pseudo-segundo orden (60 ºC), asimismo los resultados 
experimentales se ajustan bien a la isoterma de Langmuir. Los resultados experimentales del sistema se han 
comparado con los obtenidos con otras resinas de intercambio cationico y también con nanotubos de carbono 
de pared multiple oxidados y sin oxidar. Se estudia la selectividad del sistema Co(II)-Lewatit TP260 con respecto 
a la presencia de otros cationes (disoluciones binarias Co-metal) en el medio acuoso). El cobalto(II) cargado en 
la resina se puede fluir con disoluciones ácidas (HCl o H2SO4). 
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1. INTRODUCTION

Cobalt is an element necessary for human life, 
in fact, a biochemical key cobalt-bearing product is 
vitamin B12 or cyanocobalamin. However in excess, 
cobalt became toxic for humans. Upon ingesta, 
cobalt distributed in all tissues and liver, kidney and 
bones, thus it is responsible for a series of diseases, 
and also based on the animal data, the International 
Agency for Research on Cancer (IARC) had con-
sidered that this metal has a great possibility to pro-
duce cancer in humans (ATSDR, 2004; Kim et al., 
2006; Leyssens et al., 2017). 

Thus, the removal of this element from different 
environments is of a practical necessity. In aque-
ous media, cobalt is normally found as cobalt(II) or 
Co2+, and the treatment of solutions containing it, 
included, as recent literature shows, ion exchange, 
adsorption, solvent extraction and liquid membranes 
processing (Ashtari and Pourghahramani, 2018; 
Bozecka et al., 2018; Devi et al., 2018; Farag et al., 
2018; Hayati et al., 2018; Kara et al., 2018; Ma et al., 
2018; Omelchuk and Chagnes, 2018; Song et  al., 
2018; Vafaei et al., 2018; Xavier et al., 2018; Yuan et 
al., 2018; Zherebtsov et al., 2018; Anirudhan et al., 
2019; Rodriguez et al., 2019).

In this new article of  the series (Alguacil 
et al., 2002; Alguacil, 2002; Alguacil, 2003; 
Alguacil, 2017a; Alguacil, 2017b; Alguacil, 2018a; 
Alguacil 2018b; Alguacil and Escudero, 2018; 
Alguacil 2019a; Alguacil 2019b), the removal of 
cobalt(II) from aqueous solutions by the use of  the 
cationic exchanger Lewatit TP260 resin is investi-
gated. Several experimental parameters affecting 
the metal loading onto the resin are considered, 
and also competitive cobalt-metals systems as well 
as the use of  various resins and smart adsorbents 
are studied in terms of  cobalt uptake. The elution 
of  this metal from cobalt-loaded resin by different 
eluants is also investigated.

2. EXPERIMENTAL

Lewatit TP260 (Fluka) is a macroporous weakly 
acidic resin with di-Na+ substituted (aminomethyl)
phosphonic acid groups. Other cations exchange 
resins and chemicals used in the experimentation 
are of AR grade. The oxidized and non-oxidized 
multiwalled carbon nanotubes (MWCNTs) have the 
characteristics given elsewhere (Alguacil et al., 2016; 
Alguacil et al., 2017). 

Batch experiments (loading and elution) were 
carried out in a glass reactor (250 mL), containing 
the aqueous solution of cobalt(II) and the resins/
adsorbents, and was stirred via a four blades glass 
impeller at 1200 min-1 and 20 ºC, except when these 
variables were investigated.

Cobalt (and metals) in the aqueous solutions 
were analysed by AAS, whereas cobalt (and metals) 
loaded onto the resins/adsorbent were calculated by 
the mass balance.

3. RESULTS AND DISCUSSION

Since Lewatit TP260 is a cationic exchanger 
resin, it is logical to attribute the metal uptake onto 
the resin to the next equilibrium:

	 Na Co Co 2Na
2 aq

2
r
2

aq
r

( )− +
 ⇔ − ++ + + + 	 (1)

where [- represented the non-reactive part of the 
resin, and r and aq refereed to the species in the resin 
and in the aqueous solution, respectively. 

3.1. Cobalt(II) loading onto Lewatit TP260

The variation of the stirring speed may have a 
key influence in the load of a given metal onto a 
given resin/adsorbent, though the investigation of 
this variable in these systems is very often neglected 
by researchers. Considering its experimental impor-
tance, in the present system the influence of this 
variable on cobalt(II) uptake onto the resins was 
first investigated by the use of aqueous solutions 
containing 0.01 g·L-1 Co(II) at pH 4 and resin dos-
ages of 0.25 g·L-1. The results obtained from this 
investigation being summarized in Table 1. It can be 
seen that the metal uptake increases from 28 mg·g-1 
to 32 mg·g-1 when the stirring speed of the system 
increases from 300 to 1200 min-1, and then remained 
constant. Thus, in the 1200-1400 min-1 range, the 
system reached a minimum in the thickness of the 
feed solution boundary layer and the metal uptake 
maximizes.

Using the results at 1200 min-1, it was estimated 
the rate law for cobalt(II) uptake. The best fit (r2= 
0.9795) corresponded to the aqueous diffusion 
(Lopez Diaz-Pavon et al., 2014):

	 ln 1 F kt( )− = − � (2)

Table 1.  Influence of the stirring speed on cobalt(II) 
uptake onto the resin

Stirring speed, min-1 aMetal uptake, mg·g-1

300 28

600 30

1200 32

1400 32
aAfter 5 h (equilibrium conditions). Temperature: 20 ºC 
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with k estimated as 0.012 min-1. In the above equa-
tion, t was the elapsed time, and F was calculated as:

	 F
Co(II)

Co(II)
r,t

r.e

[ ]
[ ]= � (3)

being [Co(II)]r,t and [Co(II)]r,e the cobalt concentra-
tions in the resin at an elapsed time and at equilib-
rium, respectively.

The influence of the temperature (20-60 ºC range) 
on cobalt(II) loading onto the resin was investigated 
using the same aqueous solution and resin dose as 
above, and stirring speeds of 1200 min-1. After 5 hours 
contact time, time in which the system achieved the 
equilibrium for all the range of temperatures investi-
gated, the percentage of metal loading onto the resin 
is increased with the increase of the temperature, i.e., 
80% at 20 ºC and 92% at 60 ºC, which corresponded 
to cobalt(II) uptakes of 32.0 and 36.8 mg·g-1, respec-
tively. Thus, it is concluded that the metal loading 
onto the resin is endothermic, with ΔHº estimated as 
21 kJ·mol-1, whereas ΔSº is 95 J·mol-1 K-1, representa-
tive of a process which incremented its randomness, 
and ΔGº -7 kJ·mol-1, indicative of an spontaneous 
equilibrium. Moreover, the variation of the tempera-
ture indicated that the system reached the equilib-
rium at shorter contact times as the temperature is 
increased, i.e. 5 h at 20 ºC against 3 h at 60 ºC, and the 
results were fitted to the usual kinetics models. The 
results from this fit indicated that at 20 ºC, the pseudo-
first order kinetic model (Hemavathy et al., 2019) best 
represented the experimental results (r2= 0.9763):

	
ln Co II Co II ln Co II kt

r,e r,t r,e( )( ) ( ) ( )  −   =   − � (4)

with k of 0.012 min-1 and ln [Co(II)]r,t of  3.4, value 
which compared well with the experimentally 
obtained of 3.5. At 60 ºC, the experimental results 
were best fitted to the pseudo-second order kinetic 
model (Alguacil, 2018c) (r2= 0.9718):

	
t

Co II
1

k Co II

t
Co II

r,t r,e

2

r,e
( ) ( ) ( ) 

=
 

+
 

� (5)

with k in the 5x10-4 min-1 magnitude order.
The influence of the aqueous pH value on 

cobalt(II) uptake onto the resin was investigated 
using aqueous solutions of 0.01 mg·L-1 Co(II) at var-
ious pH values (1-5) and resin dosages of 0.5 g·L-1. 
The results from these set of experiments were 
summarized in Table 2, in which it can be seen that 

in the 3-5 pH interval range the metal loading was 
practically the same, but at the more acidic pH value 
the metal loads was nil, indicating that cobalt(II) 
was not recovered from the aqueous solution. 

The influence of the continuous variation of the 
resin dosage onto the metal loads was investigated 
using the same aqueous solution that in previous 
experiments and resin dosages in the 0.07-0.5 g·L-1 
range. Table 3 showed the results obtained from 
these experiments, and it was concluded that the 
variation of the resin dosage produced an increment 
in the percentage of cobalt(II) loaded onto the resin, 
but at the same time the metal uptake decreased. 
These results were used to estimate the equilibrium 
isotherm, and the results from this fit indicated that 
the experimental results were best represented by the 
Langmuir model (r2= 0.9612) (Daraei and Mittal, 
2017; Rahmani et al., 2017):

	
1

Co II
1

Q
1

bQ
1

Co(II)
r,e

0 0
aq,e[ ]( ) 

= + � (6)

being [Co(II)]aq,e the metal concentration in the 
aqueous solution at the equilibrium. The value of 
b was estimated as 0.13 L·mg-1, and the constant 
separation factor or equilibrium parameter, RL was 
estimated using the next equation:

	 R
1

1 b Co(II)L

0[ ]=
+

� (7)

Table 2.  Influence of the aqueous pH on cobalt(II) 
uptake onto the resin

pH aCobalt uptake, mg·g-1

1 nil

3 19.6

5 19.9
aAfter 5 h (equilibrium conditions). Temperature: 20 ºC. 
Stirring speed: 1200 min-1

Table 3.  Influence of the resin dosage on cobalt(II) 
uptake onto the resin

Resin dosage, g×L-1 a% Cobalt uptake aMetal uptake, mg·g-1

0.50 99.5 19.9

0.38 87.0 23.2

0.25 80.0 32.0

0.18 73.5 42.0

0.13 70.2 56.0

0.07 40.1 62.0
aAfter 5 h (equilibrium conditions). Temperature: 20 ºC. 
Stirring speed: 1200 min-1
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being [Co(II)]0 the initial metal concentration in the 
aqueous solution. Thus, RL, from the present sys-
tem, is of 0.44, indicating a favourable system.

The increase the ionic strength (I) of the aque-
ous solution and its effect on cobalt(II) uptake was 
investigated using aqueous solutions of 0.01 g·L-1 
Co(II) and various LiCl concentrations, and resin 
dosages of 0.25 g·L-1. Table 4 showed the decrease 
in metal loading as the ionic strength of the solution 
was increased.

In order to compare the performance of  Lewatit 
TP260 with respect to cobalt(II) removal from 
aqueous solutions, different cationic exchangers 
were examined and also non-oxidized and oxi-
dized multiwalled carbon nanotubes. The experi-
mental conditions used were of  aqueous solutions 
containing 0.01 g·L-1 Co(II) at pH 4, exchangers/
adsorbents dosages of  0.5 g·L-1 and temperature of 
20 ºC. Table  5 showed the results obtained from 
these sets of  experiments. It can be seen that metal 
uptake is similar in the case of  Lewatit SP112 and 
Lewatit TP260 resins, both acidic and in Na+ form 
though with different active group, and with near 
half  the metal uptake in the case of  oxidized-mul-
tiwalled carbon nanotubes. In the case of  Lewatit 
OC1026 resin, cobalt uptake is about six times 
lower than those exhibited with SP112 and TP260 
resin, and this uptake is even lower in the case of 
using multiwalled carbon nanotubes as adsorbent 
for cobalt(II). 

The competitive removal of cobalt(II) in pres-
ence of other cations in the aqueous solution was 
also investigated. In this case, the aqueous solutions 
contained 1.7x10-4 M of each element (binary solu-
tions) at pH 4 and the Lewatit TP260 dosage was 
of 0.25 g·L-1. The results obtained in these sets of 
experiments being summarized in Table 6 in the 
form of the separation factor Co/Metal (βCo/M), cal-
culated. as:

	
D

DCo/M
Co

Metal

β = � (8)

and where, D is the distribution coefficient (cobalt 
or metals) between the resin and the aqueous solu-
tions, defined as:

	 D
Co

Co
r,e

r,aq

[ ]
[ ]= � (9)

and where [Co]r,e and [Co]r,aq are the cobalt (metals) 
concentrations in the resin and in the aqueous solu-
tion at equilibrium, respectively. Accordingly with 
the results presented in Table 6, only in the case of the 
Co-Mn and Co-Zn pairs, cobalt is separated selec-
tively from the accompanying metal (β>1). In all the 
other cases, the accompanying metal is exchanged 
preferably to cobalt(II) (β<1). In these cases, it 
should be better accomplish a non-selective metals 

Table 4.  Influence of the aqueous ionic strength (I) on 
cobalt(II) uptake onto the resin

I, M aMetal uptake, mg·g-1

- 32.0

0.05 29.6

0.13 16.0

0.25 14.8

aAfter 5 h (equilibrium conditions). Temperature: 20 ºC. 
Stirring speed: 1200 min-1

Table 5.  Cobalt(II) uptakes using different ion exchangers/adsorbents

Exchanger/adsorbent Active group aMetal uptake, mg·g-1

Lewatit OC1026 Di-2ethylhexylphosphate 3.1

Lewatit SP112 (adsorbed) 19.8

Lewatit TP260 Strongly acidic in Na+ form 19.9

Oxidized-multiwalled carbon This work 8

nanotubes carboxylic groups 1.6

Multiwalled carbon none

nanotubes
aAfter 5 h (equilibrium conditions). Stirring speed: 1200 min-1 

Table 6.  Separation factors Co/Metal from binary 
solutions

System aβCo/M
Co(II)-Pb(II) 0.36

Co(II)-Zn(II) 1.5

Co(II)-Mn(II) 1.1

Co(II)-Ni(II) 0.95

Co(II)-Cr(III) 0.33

Co(II)-Cu(II) 0.84
aAfter 5 h (equilibrium conditions). Temperature: 20 ºC. 
Stirring speed: 1200 min-1 
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load onto the resin, and then separate them by selec-
tive or controlled elution process (Cerpa et al., 2017). 
It should be noted here that in the case of cobalt(II), 
these multielmental systems demonstrated that 
the cobalt(II) uptake decreased with respect to the 
uptake resulted in the removal of the metal from a 
cobalt monoelemental solution, this should be attrib-
uted to interactions between the ions presented in the 
aqueous solution.

3.2. �Cobalt (II) elution from Co(II)-loaded Lewatit 
TP260 resin

Elution experiments were performed with resin 
loaded with 14 mg Co/g under various experimental 
conditions. Table 7 showed that the variation of the 
volume of eluant versus resin weight had a negligible 
effect on the percentage of cobalt eluted using 1 M 
HCl solutions as eluant. In the same Table, was pre-
sented the result obtained when the eluant solution 
was changed from HCl to H2SO4 or NaCl solutions. 
This change in the solution composition produced a 
dramatic change in the results, since with 1 M sul-
phuric acid the percentage of cobalt eluted is the 
same than that obtained with 1 M HCl solution, but 
when 1 M NaCl solution was used, the percentage 
of cobalt recovered in the solution was of a mere 
5%. From the above results, it is seemed clear that 
the elution responded to the next equilibrium:

	 Co 2H H Co2
aq 2 aq

2− + ⇔ − ++ + + + � (10)

where the subscript aq, represented the elution 
phase. Thus, a washing of the resin with NaOH 
solution is needed in order to recycle back to the 
Na+ form.

4. CONCLUSIONS

–– Cobalt(II) is removed from aqueous solutions 
by the use of Lewatit TP260 resin. The removal 
of the metals is attributed to a cation exchange 
mechanism which released Na+ ions to the 
aqueous solution. A minimum thickness of the 
aqueous diffusion layer is reached with agitation 

speeds of around 1200 min-1, in this conditions 
cobalt uptake onto the resin is a maximum, and 
the metal uptake onto the resin responded to the 
aqueous diffusion model. 

–– The exchange process is endothermic and 
spontaneous (ΔHº= 21 kJ·mol-1 and ΔGº= -7 
kJ·mol-1), whereas the metal upload result in 
an increase disorder of the system (ΔSº= 95 
J·mol-1K-1). At 20 ºC, the experimental results 
fit well to the pseudo-first order kinetic model, 
but at 60º C the best fit corresponded to the 
pseudo-second order kinetic model. At acidic 
pH values the resin does not remove the metal 
from the solution, however in the 3-5 pH range, 
and under the experimental conditions used in 
this work, the load is 19.6 mg·g-1. 

–– The increase of the aqueous ionic strength 
decreased the metal removal from the solution, 
however, an increase in the resin dosage increase 
this removal from 40% to 99.5% for 0.07 to 
0.5 g·L-1 resin dosages, respectively. 

–– The resin performed well, in the removal of 
cobalt(II) from aqueous solutions, against 
oxidized and non-oxidized multiwalled car-
bon nanotubes, however, the resin does not 
performed well, with respect to its selectivity 
towards Co2+, in the presence of a series of 
accompanying-metal ions in the aqueous solu-
tion. Cobalt is eluted from the loaded resin by 
the use of acidic solutions. 
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