Effect of Ni on microstructure and wear behaviour of 13Cr-W-Mo-2C white cast iron

Tanju Teker*, S. Osman Yılmaz

*Corresponding author: tanjuteker@cumhuriyet.edu.tr

ABSTRACT: The effect of Ni concentration on the microstructure and wear performance of 13Cr-(0.5-7.0)Ni-W-Mo-Mn-2C white cast iron subjected to homogenization heat treatment was examined. Concentration of Ni was altered in the range 0.5-7.0 wt.% to obtain a stable microstructure against for dry sliding wear resistance as long sliding distance. The effect of Ni on the microstructure was analysed by X-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, elemental mapping and hardness. The wear performances were tested under the loads of 40, 90 and 140 N. Differential thermal analysis of samples with dissimilar Ni values was performed. The increase of Ni concentration decreased the secondary arm spacing of dendrites, refined the dendritic structure and raised the eutectic carbide ratio. The greatest wear performance was obtained for the sample having Ni over 6 wt.%.

KEYWORDS: Hardness; HCrWCl; Microstructure; Nickel; Wear

RESUMEN: Efecto del Ni en la microestructura y el comportamiento frente al desgaste de la fundición blanca 13Cr-W-Mo-2C. Se examinó el efecto de la concentración de Ni en la microestructura y el comportamiento frente al desgaste de la fundición blanca 13Cr-(0.5-7.0)Ni-W-Mo-Mn-2C sometida a tratamiento térmico de homogeneización. La concentración de Ni se modificó en el rango 0,5-7,0% en peso para obtener una microestructura estable frente al desgaste por deslizamiento en seco para una larga distancia de deslizamiento. El efecto del Ni en la microestructura se analizó mediante difracción de rayos X, microscopía electrónica de barrido, espectrometría de energía dispersiva, mapeo químico elemental y dureza. Las prestaciones frente al desgaste se ensayaron con cargas de 40, 90 y 140 N. Se realizó un análisis térmico diferencial de las muestras con distintos valores de Ni. El aumento de la concentración de Ni redujo el espaciado entre los brazos secundarios de las dendritas, afinó la estructura dendrítica y aumentó la proporción de carburo eutéctico. El mayor rendimiento frente al desgaste se obtuvo en la muestra con Ni superior al 6% en peso.

Copyright: © 2023 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.
1. INTRODUCTION

HCrWCIs are sub-eutectic, eutectic or hypereutectic compounds. HCrWCIs are employed as materials having 10-30 wt.% Cr and 2.0-3.5 wt.% C. The high nominal chromium content helps to prevent graphite formation and stabilize carbides. Also, copper, manganese, nickel and molybdenum, are necessary for the processing of hard materials as cement, gravel, ore and coal (Powell and Bee, 1996; Tabrett and Sare, 2000; Zhang et al., 2001; Bedolla et al., 2003; Wang et al., 2006). The white cast iron microstructure is the same as the metal matrix composites. Austenite is a basic structure often encountered in cast high Cr metals. Moreover, the carbide in the structure of such alloys is M₇C₃ (M = Fe, Cr).

2. MATERIALS AND METHODS

The chemical composition of the 13Cr-W-Mo-2C white cast iron subjected to homogenization heat treatment was investigated.

Table 1. The chemical composition of the 13Cr-Ni-W-Mo-Mn-2C white cast iron

<table>
<thead>
<tr>
<th>Elements</th>
<th>Fe (wt.%)</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Mo</th>
<th>Cr</th>
<th>W</th>
<th>S</th>
<th>P</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bal.</td>
<td>2.3</td>
<td>0.5</td>
<td>1.6</td>
<td>0.5</td>
<td>7.0</td>
<td>3.2</td>
<td>13</td>
<td>1.2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 2. The heat treatment of the experimental samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Heat treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>13Cr-1Ni-W-Mo-Mn-2C</td>
<td>6 h, 1000 °C, air cooling</td>
</tr>
<tr>
<td>S2</td>
<td>13Cr-2Ni-W-Mo-Mn-2C</td>
<td>6 h, 1000 °C, air cooling</td>
</tr>
<tr>
<td>S3</td>
<td>13Cr-4Ni-W-Mo-Mn-2C</td>
<td>6 h, 1000 °C, air cooling</td>
</tr>
<tr>
<td>S4</td>
<td>13Cr-6Ni-W-Mo-Mn-2C</td>
<td>6 h, 1000 °C, air cooling</td>
</tr>
<tr>
<td>S5</td>
<td>13Cr-7Ni-W-Mo-Mn-2C</td>
<td>6 h, 1000 °C, air cooling</td>
</tr>
</tbody>
</table>

The chemical composition of the samples used for the study is given in Table 1. 13Cr-W-Mo-2C materials were melted in a medium frequency induction furnace of 10 kg. 0.5-7 wt.% Ni was added to the composition for austenite matrix stabilization. 75 wt.% Fe was inserted to the crucible to minimize oxidation and slag. The melt was heated to 1560 °C and poured into CO₂-silicate molds at 1450 °C. The dimensions of the sample are 50×50×10 mm³. The heat treatment of the samples is given in Table 2. Homogenization heating process utilized in this study contained annealing in argon atmosphere at 1000 °C for a period of 6 h, followed by air-cooling.

The samples were polished and then etched in a solution of (5 g FeCl₃, 30 ml HCl, and 100 ml distilled water). Metallographic evaluation of samples was analyzed by X-ray diffraction (XRD: Bruker) and scanning electron microscopy (SEM: JEOL JSM 5600LV). Energy dispersive spectrometry (EDS), elemental mapping. A QNESS Q10M device was used to perform microhardness measurements with the HV scale under a 100 g load. Differential thermal analysis of the samples was performed (DTA: SHIMADZU TG-DTA). Under the loads of 40, 90, and 140 N, wear tests were done on a pin-on-disc wear machine (models: UTS Tribometer T10/20) according to the ASTM-G65 Standard. All tests were performed with a wear test time of 60 s. The wear rates were obtained by measuring the sample masses before and after the wear tests. Worn surfaces were examined by SEM.

3. RESULTS

3.1. Microstructure and hardness

SEM micrograph of hypoeutectic as-cast 13Cr-W-Mo-2C white cast iron is shown in Fig. 1. Microstructure comprised a typical eutectic structure (matrix) and large hexagonal-shaped M₇C₃ carbides. The as-cast state had M₇C₃ carbides in the austenitic matrix. After a destabilization heat treatment, the matrix microstructure became heavily formation of secondary carbides within the austenite dendrite (Fig. 2).

The typical microstructures of samples having different Ni concentration of 1, 2, 4, 6, 7 wt.% and as heat treated circumstances (6 h, 1000 °C, air cooling) are shown in Fig. 2a-e. After the heat treatment, the dendritic structure disrupted, the continuity of dendritic carbides was cut and the carbides started to shrink. A significant fraction of retained austenite still remained after heat treatment between M₇C₃ carbides which is thought to be due to the alloy’s high Ni content (>4). The presence of high Ni content around the austenite dendrite will tend to stabilize the remaining austenite where Ni is completely rejected by the carbide phase. The heat treatment time duration was effective especially on the derogation of the M₇C₃ carbides. The rejection of Ni to austenite phase softened the transformation of austenite to martensite, and suppressed the martensite start temperature. The most fundamental phases in white cast irons were austenite, martensite and pearlite. The hardness, toughness and abrasive characteristics of the structure depend on the ratio of these phases (Chand et al., 2009). The samples studied here were hypoeutectic white cast irons, and the first matrix phase was the austenite. This phase forming as the first nucleolus during solidification evolve to the form of dendrite arms with different shapes based on the thermal gradient. Austenite crystals had a certain carbon equivalent. This carbon equivalent is created by elements such as C, Mn, Ni and Mo. As the C concentration in the matrix structure increases, the lattice parameter in the body-centered cubic atomic crystal also increases. The carbon concentration in the austenite may change between 2.11% and 0.30% based on the concentration of C in the austenite. At room temperature, the solubility of C in the austenite was approximately zero. C had the most effective role in the stability of the austenite phase in room temperature C was the most important factor in reducing the martensite initiation temperature to lower values. If the transition to the pearlite phase is wanted to be prevented from the austenite phase with high-C content, then the structure is cooled down to room temperature, and the appearing phase remains becomes austenite (Biner, 1985; Lin et al., 2010; Chandan et al., 2022).

Figure 1. SEM micrographs of as-cast 13Cr-W-Mo-Mn-2C white cast iron.
SEM micrographs of the microstructure showing the changes created by Ni addition are shown in Fig. 2. The presence of Ni had a substantial impact on the arm spacing of the carbides. There were microstructural differences in the arm length of carbides and carbide vol.%. The additions of Ni were increased arm spacing of carbides, and the carbide volume fraction from 0.20 to 0.30 for 0.5-7.0 wt.%. The increase of the Ni concentration caused destabilisation of the M_3C phase, replaced by M_7C_3 eutectic carbide phase, and broke the dendritic morphology (Fig.2e) (Laird et al., 2000). In addition, the presence of 2-7 wt.% Ni in the structure allows the virgin austenite to approach the Ms temperature unimpeded by the creation of pearlite. The microstructure of as-cast structure having 2-7 wt.% Ni included austenite-martensite phase mixture. Together with Ni, the concentration of Cr was important in the formation of carbide type of the structure during solidification (Laird et al., 2000). The presence of Cr over 5 wt.% in this alloy having high Ni concentration formed the refined M_7C_3 carbides. Ni concentration above 6 wt.% produced a homogeneously dispersed microstructure with M_7C_3 carbides lower than 2 µm (Fig. 2e).

The heat-treated samples shown in Fig. 2 had a microstructure that differed significantly from the cast structure (Fig. 1). The biggest difference lies in transformation of austenite to martensite and the increase in M_3C secondary carbide concentration. The hardness results of experimental samples are given in Fig. 3. The increase of Ni had a great influence on hardness according to the as-cast condition. However, there were a little rise on the hardness for the additions of Ni over 2 wt.% in the heat-treated condition. Heat treatment eventuated in a significant hardness change. The matrix hardness was 400 HV in the as-cast sample, it was 781 HV in the 5 wt.% Ni sample. This rise was caused probably by solid solution treatment leading to dissolution of Si in the austenitic structure. Microhardness increased from 576 to 731 HV in the sample with 7 wt.% Ni. Fig. 3 also indicates that the hardness decreased adjacent to the surface due to fine, rod and blade type M_7C_3 carbides and small proeutectic austenite dendrites. Further away from the surface, the austenite dendrites became larger and carbide morphology became more blades like. The fine dendritic structure transformed to coarser structure as function of solidification rate. The increase in hardness presented an interesting relationship between the microstructures of the samples during heat treatment. This relation was not only depending on the concentration of martensite, the presence of tiny secondary carbides was primarily effective on the degree of hardness and toughness.

The XRD pattern of the steel with 7 wt.% Ni content (S5) is displayed in Fig. 4. The samples contained hard eutectic carbides embedded in an austenitic matrix. The matrix consisted mainly of austenite dendrites. The austenite was surrounded by M_7C_3 carbides. This carbide was embedded in a martensitic matrix which contains retained austenite as an outcome of heat treatment in the microstructure. Austenite and martensite phases were supersaturated with carbon and other alloying elements. This led to a decrease in Ms (initial temperature of the martensitic transition) and the preservation of a high amount of austenite at room temperature for the samples having Ni over 6 wt.%.

Chemical composition clarified by EDS of the steel with 7 wt.% Ni content (S5) is shown in Fig. 5, and results verify the phases as M_7C_3. Figure 6 demonstrates the SEM mapped image analysis of the sample S5. Mn, Si, W, Mo, Ti, Ni, C, Cr and Fe elements are presented in the sample. Note that there was a hypoeutectic composition for 0.5 wt.% Ni within the austenite phase interval in the alloy. The 2 wt.% Ni alloy (S2) was near to the eutectic phase, while the alloys with 4-5 wt.% Ni content had a hypereutectic composition where solidification began with the formation of M_7C_3. The addition of up to 6 wt.% Ni (S4) increased the amount of austenite retained in the cast structure from about ~65 vol.% to ~70 vol.%. For samples containing 7 wt.% Ni (S5), the composition was stable at ~25% under...
heat-treated conditions. The presence of more than 6 wt. % Ni in the structure stabilized the austenite. The DTA plot is given in Fig. 7. DTA analysis values obtained from four samples are given in Table 3. The solidification limit was observed based on the liquid and solidification temperatures in samples having increased Ni concentration from 0.5 to 6 wt. % (Fig. 2 and 5). All eutectic carbides and phases were identified at room temperature. Under unstable conditions, the phase transition interval was shorter than under equilibrium conditions. The liquidus temperature of the steel with 7 wt. % Ni (S5) content was higher than other samples. The sample having higher Ni concentration showed higher formation temperature of M\textsubscript{7}C\textsubscript{3} and austenite. Additionally, in this alloy, M\textsubscript{3}C precipitated earlier than the corresponding eutectic transformation in low-grade Ni samples (Biner, 1985; Chandan et al., 2022). The presence of primary M\textsubscript{7}C\textsubscript{3} carbides in our hypoeutectic samples were not expected. However, during the eutectic solidification, the carbides will completely reject Si and Ni into the remaining liquid. The remaining liquid then becomes supersaturated with Si and Ni, rising the activity coefficient of carbon, and the carbon content of eutectic boundary increases as the carbon concentration of hyper-eutectic liquid. Consequently, primary M\textsubscript{7}C\textsubscript{3}, carbides formed during solidification reactions (Table 3). If the Si level is not kept above 1.5%, the eutectic reaction (Rx3) drift down forming Rx4 which is not preferred.

3.2. Wear test

The change of friction coefficient as a function of load is shown in Fig. 8. The friction coefficient (μ) was determined to be more than 0.4 for various sample loads. An increase in the friction coefficient from the first value to the stable value was observed following ~1000 m sliding. For base samples, a major decrease in the friction was observed with load from ~1.0 for 40 N to ~0.62 for 140 N.

The worn surfaces for loads of 40, 90 and 140 N are shown in Fig. 9 a-c. A mild increase in the friction was observed at all loads with the increase in the austenite phase concentration. The austenite concentration nearly obtained the identical wear values in cast and heat-treated samples for 40 and 90 N loads. With the increase in the load to 140 N, certain differences were acquired in the as-cast and heat-treated conditions. At the above-mentioned

Table 3. Values of DTA analyzes performed on four samples

<table>
<thead>
<tr>
<th>Phases</th>
<th>Samples</th>
<th>S2 (°C)</th>
<th>S3 (°C)</th>
<th>S4 (°C)</th>
<th>S5 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx1</td>
<td>L → d</td>
<td>1415</td>
<td>1420</td>
<td>1387</td>
<td>1425</td>
</tr>
<tr>
<td>Rx2</td>
<td>L + d → g</td>
<td>1330</td>
<td>1367</td>
<td>1340</td>
<td>1380</td>
</tr>
<tr>
<td>Rx3</td>
<td>L + g → M\textsubscript{7}C\textsubscript{3}</td>
<td>1185</td>
<td>1227</td>
<td>1120</td>
<td>1280</td>
</tr>
<tr>
<td>Rx4</td>
<td>L + g → M\textsubscript{3}C</td>
<td>1143</td>
<td>1145</td>
<td>1098</td>
<td>1158</td>
</tr>
</tbody>
</table>

![Figure 5. Chemical composition clarified by EDS of sample S5.](image)

![Figure 6. SEM mapped image analysis of sample S5.](image)

![Figure 7. DTA plot of samples.](image)

![Figure 8. Change of friction coefficient as function of load.](image)

![Figure 9. Worn surfaces at loads of a) 40 N, b) 90 N, c) 140 N.](image)
loads, samples with 7 wt.% Ni (S5) exhibited the best wear resistance. Sample of as-cast form showed the weakest wear resistance. No differences in the composition surface structure were observed. In Fig. 10a, it could be observed that the worn surface of the reference sample without Ni content at 40 N was presented local grooves. The remaining regions were determined to have a uniform structure and smooth oxide layer. A carbide component was determined within the oxide film of the surface at the load of 40 N.

Wear rates versus sliding distance are given in Fig. 10 d-e. It was determined to be Fe2O3 in Fig. 10b. Phases α-Fe and carbide M ₇Cl₃ were also present. Increasing the load to 90 N resulted in fewer abrasive grooves (Fig. 10b) and a smoother surface. Mostly Fe₂O₃, few traces of carbide M₇C₃, and wear residues occurred. However, α-Fe was not detected at 40 N load. Oxide layers and fine particulate oxide deposits formed the surface morphology. Almost no change in the structure of the eroded surface was observed at higher loads. However, surface roughening was detected, which is a sign of local adhesion. Together with Fe₂O₃, the FeO phase was present in the debris. Moreover, more intense plates seen on the wear surface caused an increase in the density of the oxide layer. The oxides were effortlessly solved at the load of 90 N. However, the surface did not change at 40 N load. At 140 N load, the oxide layer with M₇C₃ fragments was thicker (Fig. 10c). The expansion of carbide fragmentation was determined to be ~25 µm at the above-mentioned load. There were also incipient stages of carbide cracking by fragmentation of carbide rods adjacent to the surface. Nevertheless, a more diffuse interface was acquired. Numerous M₇C₃ particles obtained from an extremely deformed substrate layer were present in the oxide. The effect of M₇C₃ size and morphology as a result of Ni addition was clearly observed. The smallest carbide is equal to 7 wt.% Ni, and it caused a thinner and steadier deformation zone. However, bigger sizes of cracks were observed in the surface deformation layer in the 6 wt.% Ni sample (S4) with bigger carbide particles. The development of the microstructure on the surface apart from the cracking grade was not affected in any way by the material composition. Deformation measurement was performed on the worn surface. Addition of up to 5 wt.% Ni resulted in reduced the carbide size, changed connectivity and an increase in volume fraction. An alteration in the solidification range resulted in the improvement of the structure because of Ni addition. The high Cr iron, hypoeutectic, but Ni changed the chemical content of the alloy adjacent to the single-phase structure and ultimately, a fully austenite zone for sample with >6 wt.% Ni. There is a shorter solidification range in the single-phase structure, and the following tendency is observed: a finer structure of the alloy is acquired in case of a shorter solidification range. Additionally, the austenite phase is stabilized by Ni, subject to the impact on solidification range, and an increase in the rate of Ni and a decline in the austenite content demonstrated this alteration. This was graded to 2 wt.% Ni (S2), yet heavy for 7 wt.% Ni (S5). A significant difference was observed in the microstructure of the 6 wt.% Ni (S4) addition and materials with eutectoid transformation properties created pearlitic structures. An alteration in the ratio of secondary carbides represents a complementary impact of adding Ni. The accessible the carbon consequent for deposition on tempering was increased by Ni, subject to carbide fraction (Lim et al., 2010; Chandan et al., 2022). The mechanism of wear was predominately oxidational at every load. However, at lower loads, there was an indication of abrasive grooving. Load generally increased the oxide layer thickness. At low loads, metallic abrasion was demonstrated by the wear debris composition, however, just oxidational wear was observed at the load of 140 N. There was an alteration in the composition of the oxide debris by the load. XRD patterns of worn particulates obtained from the surface of sample S5 during wear tests are displayed in Fig. 11. At low loads, it was totally Fe₂O₃, and at high loads, it was the FeO and Fe₂O₃ combination.

With an increase in the load, the M₇C₃ content in the oxide increased. An increase of secondary dendrite arm spacing constituted the single important microstructural impact (Biner, 1985; Lairid et al., 2000). There was no major change in the carbide volume fraction. No significant impact of Ni on wear behavior was observed particularly at 140 N, a load slightly reduced the wear coefficient for 1-2 wt.%.

4. CONCLUSIONS
- Ni had a substantial impact on reducing the arm distance of the secondary dendrite arm spacing.
- A little rise on the hardness was obtained for the heat-treated samples having Ni concentration up to 2 wt.% Ni. Hardness decreased with more than 2 wt.% Ni.
- The wear coefficient of all samples under a load of 90 N decreased due to a denser surface oxide film and reduction in metal wear.
- An oxide layer consisting of Fe₂O₃ and Fe₃O₄ and M₇C₃ residues caused almost no change in the wear resistance of samples containing 2% Ni under 40-140 N loads.
- The increase of Ni as 2-4 wt.% resulted in an increase in the wear coefficient under loads of 40-140 N.
- The samples having Ni concentration over 4 wt.% showed higher formation temperature of M₇C₃ and austenite.

ACKNOWLEDGMENTS
The authors are grateful to the Inan Machina Industry and Trade Inc. for their assistance in conducting the experiments.

DISCLOSURE STATEMENT
No potential conflict of interest was reported by the authors.

REFERENCES

