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A finite difference method used to model reaustenitisation from a ferrite/cementite mixture
in Fe-C steels is presented in this paper. Concentration-dependent carbon diffusivity in
austenite is taken into account in order to generalise our earlier numerical model. We select
some parameters, such as cementite dissolution time, and compare their values as calculated
by different approximations available in the literature (in particular at steady state) for
planar and spherical geometries. When the dependence of diffusivity on concentration or
temperature is increased, the steady state approximation fails to predict correctly the above
mentioned parameters and the use of numerical techniques becomes indispensable.
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Modelizacion de la reaustenizacion en aceros Fe-C con difusividad de carbono dependiente

de la concentracion

Resumen

Palabras clave

1. INTRODUCTION

En este trabajo se presenta un método numérico de diferencias finitas para modelar la
reaustenizacién en aceros Fe-C a partir de una distribucién inicial de ferrita y cementita. Se
tiene en cuenta la dependencia de la difusividad en la austenita con la concentracién de
carbono, a fin de generalizar el propio modelo numérico previo. Se han seleccionado
algunos pardmetros, como el tiempo de disolucién de la cementita, para comparar los
valores obtenidos en este caso con los calculados con diferentes aproximaciones (en
particular con la de estado estacionario) para los casos de geometrias plana y esférica. Los
resultados obtenidos muestran que, cuando la difusividad depende fuertemente de la
concentracién, la aproximacién de estado estacionario no predice correctamente los
pardmetros calculados y se hace imprescindible la aplicacién de métodos numéricos.

Aceros. Austenita. Transformaciones de fase. Difusién. Calculo numérico.

During the last years significant progress has been
made in the modelling of heat treatment processes
in steels. Many studies have dealt with the
prediction of the microstructural evolution of steel
during cooling!" ¥, but the calculation of austenite
formation during heating has been resumed only
recently® !, The effect of austenite state at the
end of heating on phase transition kinetics during
cooling has also been considered!!® 2 16,

It used to be common to assume the diffusion
coefficient to be independent of solute
concentration (C in this case). However, in many
systems of interest this is not the case. On the
contrary, dependence may be very strong!!”! and,

when large concentration gradients are involved,
this dependence cannot be neglected!!®!,

Numerical and analytical approaches assuming
the dependence of carbon diffusivity on its
concentration have appeared in the literature!!® #
201 Either steady state growth!'”! or variational
calculus planar geometry?” has been applied in
these works. These assumptions allow an analytical
approach for carbide dissolution in steels and are
very useful for evaluating austenite formation
during heating. However, those approximations are
valid only when certain conditions are fulfilled:
validity of the quasi-steady-state regime!’! or
planar geometry!?%,

In a recent paper'” we presented a numerical
approach for the diffusion equation applied to

[13]
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reaustenitisation from a ferrite/cementite mixture
in Fe-C steels. Planar geometry and concentration
independent diffusivity of carbon in austenite were
assumed in order to obtain analytical results and to
compare them with our numerical method.

The present work is concerned with modelling
reautenitisation from ferrite/cementite mixtures in
Fe-C steels. We develop a numerical method that
allows an arbitrary dependence of carbon
diffusivity on its concentration. The resulting non-
linear differential equations are solved by means of
a stable finite difference approach, which allows to
obtain time dependent interface positions and
concentration profiles of carbon in austenite
during the growing process. It has the added
advantage that it can be easily extended to analyse
reaustenitisation during continuous heating of
ferrite-cementite aggregates in Fe-C steels.

We compare our numerical results with
different approximations appearing in the
literature: the steady state!'? and variational®®
approaches. We want to remark that even when
steady state conditions are well satisfied!!” the
parameters obtained by the steady state approach
and the proposed numerical results may differ
considerably.

The results obtained through the present model
will be compared with experimental data in a
future work.

2. MATHEMATICAL BACKGROUND OF THE
MODEL

Reaustenitisation from ferrite-cementite austenite
growth implies the simultaneous movement of the
cementite-austenite and austenite-ferrite interfaces;
in our first approximation we neglect the
nucleation step!”! because with very large distances
between carbides, cementite particles rapidly
become engulfed by austenite. Ferrite, cementite
and austenite phases will be denominated o, 6 and
Y, respectively. Assuming that ofy and /y
transformations are governed only by the solute
diffusion in the 7y phase, that is, that carbon
diffusion into cementite (quasi-stochiometric
composition) and into ferrite (carbon almost null
solubility) may be neglected, and considering the
carbon diffusion coefficient as concentration
dependent, the corresponding kinetics may be
described by the following equation:

8Cy:1 0

dt ™ dr
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C}, =C, (r,t) represents carbon concentration at a
distance r from the origin at time t and D(C,) is its
diffusion coefficient in austenite; n = O for planar
geometry and n = 2 for spherical geometry. The
diffusion coefficient is treated as concentration
dependent.

Figure 1 shows carbon concentration profiles in
the three phases.

The mass flow balances in the ofy and v/6
interfaces may be expressed by:

(Ce_cw)dTI*y:D(aCV) ) (2)
87’ T—Te.’

dr (ac)
Cr -C,) —==D|—= ()
(-G ar |7

where 1, and 7, represent the instantaneous
positions of the cementite/austenite and ferrite/
austenite interfaces, respectively, and C},’B and
CJ* represent the carbon concentrations at these
interfaces. and represent carbon concentrations
in the cementite and ferrite phases, respectively.

The initial and boundary conditions are
expressed by:

T()y(t = O) =70 Ty (t = O) =70 (4)
where 1, is the initial size of the cementite particle.

C=Cqy for0<r<rg and
C=Cyforrp<r<eo )

Local equilibrium at the interfaces is expressed by:

CYzc}]'/e at 1 ="Tgy and C7=C;’a at T =Ty (6)
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Figure 1. Scheme of the distribution of carbon concentration
in ferrite, cementite and austenite phases.

Figura 1. Distribucién esquemética de la concentracién de
carbono en las fases ferrita, cementita y austenita.
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3. THE NUMERICAL SOLUTION

In this Section we present the numerical solution
of Egs. (1)-(6) by the Finite Difference
approximation.

A uniform mesh with N nodes is defined
between the 6/yand Y/« interfaces. The first node
corresponds to 7 = 79, and the N* tor = Ty 5 the
nodal interval is:

AT:% 1)

At t = 0 there is no austenite phase (r,, = 19, =1,)
but an initial mesh in this phase is necessary in
order to start the Finite Difference program. This
mesh is generated by allowing the system to evolve
from t = O until a later time t,. Such “initial”
solution (for the Finite Difference program) is
characterised by the rq,, 7,y , C?,C"™, Cqand
1, values. Arbitrary values of 7, and r, may be
chosen but ¢, and rg, will be determined by such
choice. Concentration values at the interfaces
have been taken from table I of Ref.’). In order to
estimate the movement of the /y interface with
respect to 1,, when the Y« interface has moved
from 7, to 1,4 , and also the time elapsed, we resort
to the stationary solution for the problem. From ¢,
on, the solution is calculated through the FD
program.

Table I. Values of dissolution times of cementite as a
function of temperature for planar geometry and linear
dependence of diffusivity (see text)

Tabla I. Valores de los tiempos de disolucién de la
cementita en funcién de la temperatura para geometria
plana y con una dependencia lineal de la difusividad (ver
texto)

“Dissolution time” (s)

70 FD Dav Steady case Difference (%)
750 454 456 499.6 8.7

775 163.3 163.7 217 24.6

800 79.2 81.2 1344 35.6

825 43 45 100.8 554

850 24.7 26.9 90.4 70.2

875 15 16.55 162.4 89.8

900 9.65 10.6 223.2 95.2
428
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Following usual finite difference numerical
methods?!! and denoting the discrete time
increment by At, we define,

Cl = C(iAr, jAt) (8)
CH - CJ 1 (CL-CL)
=n—r—a, +
At Ty + 14T 2Ar
9)
1 j+l1 j+1 j+l1 j+l1
+ F a,, (CL -C")=a,, (C"=C")
where,

ai[C] =D G +2Ci—1 ]
ai+1[C] ‘—‘[D % (10)
an[C] = D[Ci]

In order to take into account the increasing of
the nodal intervals with time we use the standard
expressionm]:

aC i=cst=dC=aC ﬂ a r=cst (11)
t t T t ’
where,
Crl-Cl.

Here V; is related to the interfaces velocities
and the corresponding distances to the interfaces
positions by:

T —r dr r—1r. dr
Vi — 9y+ oy Yo (13)
Ty =T dt T, —1, dt

Using 0 and (1-0), 0 £ ¢ < 1, as the weight
corresponding to times (j+1) At and jAt, res-
At

pectively and defining ¥ = Al we obtain:
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CH'l1+oy(a,, +a )]+

+Cz}jll \/i_o;A_t.l..nyﬁ.__aL__ai +
2Ar 2 1, +idAr

sl |-V E oy B2, | =
2 Ar 2 1, +idr

=C/1-(1-0)y(a,, +a)]+Cl (1-0)-

2Ar 2 Ty, + 14T

OAt n a,
VI Ly,
2Ar 2 1, +idr

i

+Cl,(1-0)

Eq. (14) is solved by the Gauss-Seidel
method?® assuming 6 = 0.5. For any time step j, a
sufficient number of iterations were made until the
relative variation between the concentration
values was less than 10 for each i. This assures the
stability and accuracy of our numerical method.

4. COMPARISON

In this section we present the main results of this
paper, which consist in applications of the
approximation described above, to the planar and
spherical cases.

In order to show the importance of using
numerical methods, we select some parameters of
interest and compare their values as calculated by
different approximations.

The dependence on concentration of the
diffusion coefficient of carbon in austenite is taken
from ref.'"l (linear function) and ref.24
(exponential function):

320;20) with % C : wt %;

D = (0.07+0.06 % C).Exp (15)

150000 with C :
RT 30|C| mole fraction;

(16)

38000

D=0.5Exp
RT

Exp

2
[D]="= [T]=°K R=8314 J

s K.mol

The computation of cementite dissolution
times was made assuming that both interfaces
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move without limits since analytical and steady
state solutions are unable to take into account that
the cementite particle is embedded in a ferrite
matrix of finite volume that stops Y/o interface
advance when ferrite volume is exhausted. This
situation could also occur when reaustenitisation is
carried out within the intercritical range (Acl < T
< Ac3) the final state of which is a mixture of
ferrite and austenite, in proportions given by the
lever rule. The above restrictions may be easily
avoided with the use of our numerical method, but,
in order to compare the results obtained by
different techniques, we assume no limitations in
interface movement in the numerical method as
well.

4.1. Planar geometry

When planar geometry is considered an
exact analytical solution can be obtained for a
constant (concentration-independent) diffusion
coefficient® ™94 Bl iy this case both interfaces
positions obey a square root law with time:

o (0=, t77 41,
(17)

_ -1/2
T () =1, 7 +1,

The coefficients of t'/2 for rgy (t) and 1, (t) have

opposite signs (1g, < 0, 7, > 0) because, as can be

dTya drgy
seen from Eqgs.(2) and (3 ), —C—lt— >0 and —cit_ <0

reflecting the fact that the position of the
cementite/austenite (austenite/ferrite) interface is
a decreasing (increasing) function of time.

It has been common practice (see Ref.’l and
references therein), to assume a constant diffusivity
to be in the form of a weighted average defined as:

cp
f D(C)dC
& (18)

D i —
" Tier=an)

In figure 2 we compare the values of 7g,and 7,
as calculated through the present finite difference
method with a linear dependence of the diffusion
coefficient (Eq. 15) and by the analytical solution
with the diffusivity D = Dy,
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Figure 2. Values of 174, and 1,, calculated by the proposed
finite difference method with a linear dependence of the
diffusion coefficient (Eq. 15) and its analytical expression
with D = D,

Figura 2. Valores de ng, y 1y, calculados a través del
método propuesto de diferencias finitas con una
dependencia lineal del coeficiente de difusién (Ec. 15) y su
expresién andlitica con D = D,,,.

The differences in the values of these
parameters, as obtained through the approximate
analytical method (D = D,,) and through the
numerical method (FD), proved to increase with
temperature, a phenomenon already observed by
Atkinson et al.?°!,

In figure 3 we show the same parameters as in
figure 2, but assuming an exponential dependence
of diffusivity with concentration (Eq. 16). We
observe an increasing difference between these
parameters.

Table I shows the values of dissolution time of
cementite as a function of temperature for planar
geometry. Dissolution times calculated by the
proposed numerical method with linear and
constant (D = D,,) concentration-dependent
diffusivity are presented in the first and second
column, respectively. The third column shows
dissolution time calculated by steady state
approximation. Percentual differences between
values of first and third column appear in the last
column. Table II takes into account an exponential
dependence of diffusivity and shows in its columns
the corresponding dissolution times as in table I.

The steady state approximation failed to predict
correctly dissolution time values as well as 14, and
Ny yielding grater deviations when the
dependence of diffusivity on concentration is
stronger. On the other hand, the numerical
method yields correct results even when using a
constant diffusivity (D= D,,).
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Figure 3. Values of 74, and 1,, calculated by the proposed
finite difference method with an exponential dependence of
the diffusion coefficient (Eq. 16) and its analytical
expression with D = D,,..

Figura 3. Valores de ng, y n,, calculados a través del
método propuesto de diferencias finitas con una
dependencia exponencial del coeficiente de difusién (Ec.
16) y su.expresién andlitica con D = D,,.

Table II. Values of dissolution times of cementite as a
function of temperature for planar geometry and
exponential dependence of diffusivity (see text)

Tabla Il. Valores de los tiempos de disolucién de la
cementita en funcién de la temperatura para geometria
plana y con una dependencia exponencial de la
difusividad (ver texto)

“Dissolution time” (s)

T(°0Q)

FD Dav Steady case Difference (%)

750 470 476 556 14.4
775 169 176.27 252.3 304
800 79.9 86.33 157.7 45.2
825 41.7 47.11 117 59.7
850 23 273 102.9 75

875 12.7 16.4 181.9 91

900 7.6 9.97 234.88 96.8

4.2, Spherical geometry

No exact analytical solution is known for the
spherical case and, so, we must appeal to
approximation methods. The most used of them is
the steady state approximation!"”!. In tables III and
[V we assumed spherical geometry of carbide an
compare its dissolution time values for different
temperatures when the diffusion coefficient of
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Table Ill. Values of dissolution times of cementite as a
function of temperature for spherical geometry and linear
dependence of diffusivity (see text)

Tabla 1ll. Valores de los tiempos de disolucién de la
cementita en funcién de la temperatura para geometria
esférica y con una dependencia lineal de la difusividad

(ver texto)

“Dissolution time” (s)

T(°C)

FD Dav Steady case Difference (%)
750 37.36 37.58 32.72 124
775 14.16 14.34 11.22 20.7
800 7.30 7.46 5.36 26.6
825 4.24 4.35 2.96 304
850 2.62 2.69 1.78 32
875 1.66 1.72 1.18 29
900 1.1 1.18 0.82 26

Table IV. Values of dissolution times of cementite as a
function of temperature for spherical geometry and
exponential dependence of diffusivity (see text)

Tabla IV. Valores de los tiempos de disolucién de la
cementita en funcién de la temperatura para geometria
esférica y con una dependencia exponencial de la
difusividad (ver texto)

“Dissolution time” (s)

70 FD Dav Steady case Difference (%)
750 38.59 39.15 28.02 274
775 14.74 15.24 8.41 43.0
800 743 7.87 3.58 52.0
825 4.17 4.52 1.79 57.0
850 247 2.75 1.00 60.0
875 1.49 1.73 0.63 58.0
900 0.94 1.12 0.42 55.0

carbon in austenite has linear and exponential
dependence on concentration, respectively.

As in the planar case, the difference between
dissolution time values calculated with the finite
difference method and the steady state
approximation increases as the diffusion coefficient
dependence on concentration gets stronger.

We also calculate the interface positions as a
function of time by using the proposed finite
difference method and compare them with the

Rewv. Metal. Madrid 38 (2002) 426-432
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steady state approximation. Figure 4 shows both
results.

5. CONCLUSIONS

A finite difference numerical method to account
for carbon diffusivity  dependence on
concentration in  reaustenitisation  from
ferrite/cementite mixtures has been developed in
this work. Considering that analytical solutions to
this problem are generally unknown, numerical
modelling becomes indispensable. Even when
approximate analytical expressions are currently
used to describe reaustenitisation, their validity
must be tested through other methods. Moreover,
when no analytical expressions are available!'®! for
the diffusion coefficient, the use of numerical
methods cannot be avoided.

We may assure that for planar geometry, the
steady state approximation shows no satisfactory
behaviour of certain parameters like dissolution
time, as such time should decrease monotonously
as isothermal reaction temperature grows. This fact
arises from the fact that austenite formation energy
and diffusion velocity increase with temperature.
This, however, is not the behaviour predicted from
the steady state solution (Tables I and II).

On the other hand, the analytical solution with
an average constant diffusion coefficient (D=D,,),
as defined in section 4, notably yields values of the
mentioned parameters quite similar to those
obtained by numerical methods.

70
6.5 - austenne fe-
60 L rrite |nterfac —

55 [ /‘\
50F
45

40 F
35 T=775C

30
25 \\
20
15 cementite-austenite nmerfac
F \
1.0
05 F \\
00
-2 0 2 4 6 8 10 12 14 16
Time(s]

Steady state solution (linear D)

Rlum]

FD solution (linear D)

Figure 4. Interfaces position as function of time calculated by
the proposed finite difference method and by the steady
state approximation for spherical geometry.

Figura 4. Posicién de las interfaces en funcién del tiempo
calculadas a través del método propuesto de diferencias
finitas y por la aproximacién de estado estacionario para
geometria esférica.
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In the case of spherical carbides analysed above,
we see that, even when quasi-stationary
approaches are valid'”, the dissolution time values
as calculated with this approximation result in
error (Tables [II y IV ).

Austenite nucleation at carbide-ferrite
interfaces and carbide size initial distribution as
well as the presence of ternary alloying must be
taken into account to compare our results with
experimental procedures!'”. We are currently
working to incorporate the above conditions in our
numerical program.

Finally, it is worth mentioning that numerical
calculation must be used when the physical model
is improved to account for more complex
situations, as, for example, when the system is
heated or cooled continuously. Work on this line is
currently in progress.
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