The removal of toxic metals from liquid effluents by ion exchange resins. Part XV: Iron(II)/H+/Lewatit TP208

Authors

DOI:

https://doi.org/10.3989/revmetalm.190

Keywords:

Lewatit TP208, Liquid effluents, Multiwalled carbon nanotubes, Removal

Abstract


Iron(II) was removed from aqueous solutions by the use of the cationic ion exchange resin Lewatit TP208 (Na+ form). The influence of different experimental variables was investigated on the ion exchange process: stirring speed, temperature, pH of the solution and resin dosage. At stirring speeds included in the 300-1200 min-1, iron(II) uptake onto the resin fitted well to the film-diffusion model, whereas the increase of the temperature, from 20 to 60 ºC, was accompanied by an increase in the metal loaded onto the resin, thus, resulting in an endothermic ion exchange process. This ion exchange process was influenced by the variation of the pH of the solution: there was a decrease in metal uptake when the pH of the solution was shifted towards more acidic values. Also the ion exchange process was sensitive towards the variation of Lewatit TP208 resin dosage, being the process associated to the Freundlich isotherm model. This variation in the resin dosage had also an influence in the fitting of the experimental data, at various resin dosages, with the kinetics model associated to them. At the highest resin dosage (1 g·L-1) the exchange process fitted well (r2= 0.999) to the pseudo-second order model, however, at the lowest resin dosage (0.13 g·L-1), the process fitted (r2p= 0.997) the first-order model. Metal uptake was compared with that yielded with other cation-exchange resins and also against the use of multiwalled carbon nanotubes. Iron(II) loaded onto the resin was eluted using acidic solutions.

Downloads

Download data is not yet available.

References

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/ Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J., Lopez, F.A., Rodriguez, O., Martinez-Ramirez, S., Garcia-Diaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotoxicol. Environ. Safe. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008

Alguacil, F.J., Garcia-Diaz, I., Lopez, F., Rodriguez, O. (2017). Removal of Cr(VI) and Au(III) from aqueous streams by the use of carbon nanoadsorption technology. Desalin. Water Treat. 63, 351-356. https://doi.org/10.5004/dwt.2017.0264

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/ H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/ H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J., Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: arsenic( III)/OH-/Dowex 1x8. Rev. Metal. 54 (4), e132.

Alguacil, F.J. (2019a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: lead(II)/H+/Amberlite IR120. Rev. Metal. 55 (1), e138.

Alguacil, F.J. (2019b). The removal of toxic metals from liquid effluents by ion exchange resins. Part X: antimony(III)/H+/Ionac SR7. Rev. Metal. 55 (3), e152.

Alguacil, F.J. (2019c). The removal of toxic metals from liquid effluents by ion exchange resins. Part XI: Cobalt(II)/H+/Lewatit TP260. Rev. Metal. 55 (4), e154.

Alguacil, F.J., Escudero, E. (2020). The removal of toxic metals from liquid effluents by ion exchange resins. Part XII: Mercury(II)/H+/Lewatit SP112. Rev. Metal. 56 (1), e160.

Alguacil, F.J. (2020a). The removal of toxic metals from liquid effluents by ion exchange resins. Part XIII: zinc(II)/H+/Lewatit OC-1026. Rev. Metal. 56 (3), e172.

Alguacil, F.J. (2020b). The removal of toxic metals from liquid effluents by ion exchange resins. Part XIV: Indium(III)/H+/Dowex-400. Rev. Metal. 56 (4), e184.

Bezzina, J.P., Ruder, L.R., Dawson, R., Ogden, M.D. (2019). Ion exchange removal of Cu(II), Fe(II), Pb(II)and Zn(II)from acid extracted sewage sludge - Resin screening in weak acid media. Water Res. 158, 257-267. https://doi.org/10.1016/j.watres.2019.04.042

Bezzina, J.P., Robshaw, T., Dawson, R., Ogden, M.D. (2020). Single metal isotherm study of the ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from synthetic acetic acid leachate. Chem. Eng. J. 394, 124862. https://doi.org/10.1016/j.cej.2020.124862

Botelho Junior, A.B., Vicente, A.D.A., Romano Espinosa, D.C., Soares Ten.rio, J.A. (2020). Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Sep. Sci. Technol. 55 (4), 788-798. https://doi.org/10.1080/01496395.2019.1574828

Desouky, A.M. (2018). Remove heavy metals from groundwater using carbon nanotubes grafted with amino compound. Sep. Sci. Technol. 53 (1), 1698-1702. https://doi.org/10.1080/01496395.2018.1441304

Frohlich, A.C., Foletto, E.L., Dotto, G.L. (2019). Preparation and characterization of NiFe2O4/activated carbon composite potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J. Clean. Prod. 229, 828-837. https://doi.org/10.1016/j.jclepro.2019.05.037

Hao, J., Dai, C., Liu, Y., Yang, Q. (2017). Removal of copper through adsorption by magnesium hydroxide nanorod. Desalin. Water Treat. 90, 252-261. https://doi.org/10.5004/dwt.2017.21420

Lopez Diaz-Pavon, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium(III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Ma, W.J., Chen, T.H., Chen, D., Liu, H.B., Cheng, P., Zhang, Z.X., Tao, Q., Zhang, Y.Z. (2019). Removal of Fe(II), Mn(II), and NH4 +-N by using δ-MnO2 coated zeolite. Huanjing Kexue/Environ. Sci. 40 (10), 4553-4561.

Moghimi, F., Jafari, A.H., Yoozbashizadeh, H., Askari, M. (2020). Adsorption behavior of Sb(III) in single and binary Sb(III)-Fe(II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects. Trans. Nonferr. Metal. Soc. China 30 (1), 236-248. https://doi.org/10.1016/S1003-6326(19)65195-2

Puigdomenech, I. (2020). MEDUSA Program. www.kth.se. Van Dat, D., Van Thuan, L., Hoang Sinh, L., Dinh Hien, T., Hoai Thuong, N. (2019). Effectiveness of calcium deficiency in nanosized hydroxyapatite for removal of Fe(II), Cu(II), Ni(II) and Cr(VI) ions from aqueous solutions. J. Nano Res. 56, 17-27. https://doi.org/10.4028/www.scientific.net/JNanoR.56.17

WHO (2003). Iron in drinking-water. WHO guidelines for drinking- water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf . www.who.int

Wust, W.F., Kober, R., Schlicker, O., Dahme, A. (1999). Combined zero- and first-order kinetic model of the degradation of TCE and cis-DCE with commercial iron. Environ. Sci. Technol. 33, 4304-4309. https://doi.org/10.1021/es980439f

Zhou, G., Li, Q., Sun, P., Guan, W., Zhang, G., Cao, Z., Zeng, L. (2018). Removal of impurities from scandium chloride solution using 732-type resin. J. Rare Earths 36 (3), 311-316. https://doi.org/10.1016/j.jre.2017.09.009

Published

2021-04-08

How to Cite

Alguacil, F. J. . (2021). The removal of toxic metals from liquid effluents by ion exchange resins. Part XV: Iron(II)/H+/Lewatit TP208. Revista De Metalurgia, 57(1), e190. https://doi.org/10.3989/revmetalm.190

Issue

Section

Articles