Study of performance of high speed turning using the volumetric dimension coefficient of resultant cutting force

Authors

  • L. W. Hernández-González Universidad de Holguín, Dpto. de Ingeniería Mecánica
  • R. Pérez-Rodríguez Universidad de Holguín, Dpto. de Ingeniería Mecánica
  • P. C. Zambrano-Robledo Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica
  • H. R. Siller-Carrillo Centro de Innovación en Diseño y Tecnología, Instituto Tecnológico y de Estudios Superiores de Monterrey
  • H. Toscano-Reyes Centro de Innovación en Diseño y Tecnología, Instituto Tecnológico y de Estudios Superiores de Monterrey

DOI:

https://doi.org/10.3989/revmetalm.1226

Keywords:

Resultant cutting force, High speed turning, AISI 1045 steel, Analysis of factorial variance

Abstract


This work deals with the experimental study of the resultant cutting force evolution of two coating carbide and a cermet inserts, during the dry turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. A new criterion for machinability study, the coefficient of volumetric dimension of cutting force, it is introduced. The investigation showed a better performance of cermet for moderate and intermediate cutting speeds, while at high cutting speed and final machining time, the three layers coated carbide achieved the best result. The factorial analysis of variance demonstrated a significant effect of machining time on the coefficient of volumetric dimension of resultant cutting force, while the material insert factor and their interaction, for intermediate cutting speed was just significant.

Downloads

Download data is not yet available.

References

[1] F. Martínez, T. Sánchez, G. Frías y A. Pinilla, Ingeniería Mecánica 9 (2006) 7-12.

[2] W. Grzesik, High Speed Machining. Advanced Machining Processes of Metallic Materials. Theory, Modelling and Applications, Ed. Elsevier, Amsterdam, Holanda, 2008, pp. 213-226.

[3] J. Longbottom y J. Lanham, Int. J. Mach. Tool Manu. 46 (2006) 1.740-1.747. http://dx.doi.org/10.1016/j.ijmachtools.2005.04.003

[4] V. Arshinov y G. Alekseev, Metal Cutting Theory and Cutting Tool Design, Ed. Mir, Moscú, URSS, 1970, pp. 115-133.

[5] Y. Quan, Z. He y Y. Dou, Front. Mech. Eng. Chin. 3 (2008) 175-179. http://dx.doi.org/10.1007/s11465-008-0022-5

[6] V.P. Astakhov, Improvements of Tribological Conditions. Tribology of Metal Cutting, B.J. Briscoe (Ed.) Elsevier, Londres, Inglaterra, 2006, pp. 326-390.

[7] C. Vikram, P. Kesavan y B. Ramamoorthy, Int. J. Mach. Mach. Mater. 3 (2008) 133-142.

[8] V.P. Astakhov y J.P. Davim, Tools (Geometry and Material) and Tool Wear. Machining. Fundamentals and Recent Advances, J.P. Davim (Ed.) Springer-Verlag, Londres, Inglaterra, 2008, pp. 29-57.

[9] V.P. Astakhov y X. Xiao, Mach. Sci. Technol. 12 (2008) 325-347. http://dx.doi.org/10.1080/10910340802306017

[10] Y. Long, Tesis Doctoral, Clemson University, Ann Arbor, Michigan, EE.UU., 2008.

[11] H. Youssef y H. El-Hofy, Basic Elements and Mechanisms of Machine Tools. Machining Technology: Machine tools and operations, Ed. CRC Press Taylor & Francis Group, Boca Raton, EE.UU., 2008, pp. 11-57.

[12] M. Ghani, N. Abukhshim y M. Sheikh, Int. J. Adv. Manuf. Tech. 39 (2008) 874-888. http://dx.doi.org/10.1007/s00170-007-1282-7

[13] W. Grzesik y P. Niestony, Arch. Mat. Sci. Eng. 29 (2008) 105-108.

[14] W. Grzesik, Cutting tool materials. Advanced Machining Processes of Metallic Materials. Theory, Modelling and Applications, Ed. Elsevier, Amsterdam, Holanda, 2008, pp. 27-48.

[15] M. Noordin, V. Venkatesh, S. Sharif, S. Elting y A. Abdullah, J. Mater. Process. Tech. 145 (2004) 46-58. http://dx.doi.org/10.1016/S0924-0136(03)00861-6

[16] J.C. Outeiro y V.P. Astakhov, CIRP-8, R. Neugebauer (Ed.) Fraunhofer Institut Werkzeugmaschinen und Umformtechnik, Chemnitz, Alemania, 2005, pp. 517-523.

[17] I. Essel, Tesis Doctoral, Rheinisch-Westfälischen Technischen Hochschule, Aachen, Alemania, 2006.

[18] S. Iqbal, P. Mativenga y M. Sheikh, Proceedings of The Institution of Mechanical Engineers, Part B: J. Eng. Manuf. 221 (2007) 909-916. http://dx.doi.org/10.1243/09544054JEM796

[19] R. Tanaka, Y. Yamane, K. Sekiya, N. Narutaki y T. Shiraga, Int. J. Mach. Tool Manu. 47 (2007) 1.971-1.977. http://dx.doi.org/10.1016/j.ijmachtools.2007.02.003

[20] M. Tawfiq, Eng. & Tech. 26 (2008) 21-32.

[21] S. Iqbal, P. Mativenga y M. Sheikh, Int. J. Adv. Manuf. Tech. 42 (2009) 30-40. http://dx.doi.org/10.1007/s00170-008-1582-6

[22] S. Tangjitsitcharoen, Proceedings of the Institution of Mechanical Engineers, Part. J: J. Eng. Tribol. 224 (2009) 209-219.

[23] T. SreeramaReddy, T. Sornakumar, M. Venkataram, A. Reddy y R. Venkatram, Int. J. Refract. Met. Hard Mater. 27 (2009) 181-185. http://dx.doi.org/10.1016/j.ijrmhm.2008.04.007

[24] T. Özel, A. Esteves y J. Davim, Int. J. Mater. Prod. Tech. 35 (2009) 246-258. http://dx.doi.org/10.1504/IJMPT.2009.025230

[25] M. Stanford, P. M. Lister, C. Morgan y K.A. Kibble, J. Mater. Process. Tech. 209 (2009) 961-972. http://dx.doi.org/10.1016/j.jmatprotec.2008.03.003

[26] L.W. Hernández, R. Pérez, P.C. Zambrano, M.P. Guerrero y L. Dumitrescu, Rev. Metal. 47 (2011) 262-272. http://dx.doi.org/10.3989/revmetalm.1039

[27] SANDVIK Coromant, Torneado General, Suecia, 2009, pp. A4-A54.

[28] J. Silva, Tesis Doctoral, Escola de Engenharia, Universidade Federal de Minas Gerais, Brasil, 2007.

Downloads

Published

2013-08-30

How to Cite

Hernández-González, L. W., Pérez-Rodríguez, R., Zambrano-Robledo, P. C., Siller-Carrillo, H. R., & Toscano-Reyes, H. (2013). Study of performance of high speed turning using the volumetric dimension coefficient of resultant cutting force. Revista De Metalurgia, 49(4), 245–256. https://doi.org/10.3989/revmetalm.1226

Issue

Section

Articles

Most read articles by the same author(s)