Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc

Authors

  • E. A. López-Covaleda Universidad Nacional de Colombia, Facultad de Ingeniería, Dpto. de Ingeniería Mecánica y Mecatrónica
  • J. L. Mercado-Velandia Universidad Nacional de Colombia, Facultad de Ingeniería, Dpto. de Ingeniería Mecánica y Mecatrónica
  • J. J. Olaya-Flórez Universidad Nacional de Colombia, Facultad de Ingeniería, Dpto. de Ingeniería Mecánica y Mecatrónica

DOI:

https://doi.org/10.3989/revmetalm.1222

Keywords:

Wear, Thermal spray, Coatings, 140MXC

Abstract


The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser confocal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation.

Downloads

Download data is not yet available.

References

[1] S. Deshpand, S. Sampath y H. Zhang, Surf. Coat. Tech. 200 (2006) 5.395-5.406.

[2] A. Newbery y P. Newbery Grant, J. Mater. Process. Tech. 178 (2006) 259-269. http://dx.doi.org/10.1016/j.jmatprotec.2006.03.176

[3] A. Rabiei, Mater. Sci. Eng. 269 (1999) 152-165. http://dx.doi.org/10.1016/S0921-5093(99)00132-X

[4] J. Davis, Handbook of thermal spray technology, ASM International, EE.UU., 2004, p. 329.

[5] J. Davis, Handbook Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol. 1, ASM International, EE.UU.,1990, p. 2.251.

[6] Praxair Surface y Tafa Incorporated Praxair and Tafa 140 MXC tm Nano composite Wire, 2006, p. 1.

[7] G. Jin, Surf. Coat. Tech. 201 (2007) 5.261-5.263.

[8] A. Edrisy, Surf. Coat. Tech. 146-147 (2001) 571-577. http://dx.doi.org/10.1016/S0257-8972(01)01434-7

[9] A. Edrisy y A. Alpas, Thin Solid Films 420-421 (2002) 338-344. http://dx.doi.org/10.1016/S0040-6090(02)00937-9

[10] G65 Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, ASTM, 2010, p. 12.

[11] J. Tylczak, Wear 225-229 (1999) 10. http://dx.doi.org/10.1016/S0043-1648(99)00043-5

[12] J. Hawk, Wear 225-229 (1999) 1.031-1.042.

[13] R. Trezona, D. Allsopp y I. Hutchings, Wear 225-229 (1999) 205-215. http://dx.doi.org/10.1016/S0043-1648(98)00358-5

[14] S. McCartney, Wear 267 (2008) 9.

[15] K. Al-Rubaie, H. Goldenstein y J. Biasoli de Mello, Wear 225-229 (1999) 163-173. http://dx.doi.org/10.1016/S0043-1648(99)00009-5

[16] M. Jones, Wear 251 (2001) 1.009-1.016. http://dx.doi.org/10.1016/S0043-1648(01)00702-5

[17] A. Horlock, Mater. Sci. Eng. 336 (2002) 88-98. http://dx.doi.org/10.1016/S0921-5093(01)01918-9

[18] L. Bourithis y G. Papadimitriou, Wear 258 (2005) 1.775-1.786. http://dx.doi.org/10.1016/j.wear.2004.08.006

[19] G. Gore, Wear 203-204 (1997) 544-563. http://dx.doi.org/10.1016/S0043-1648(96)07414-5

[20] A. Edrisy, Wear 251 (2001) 1.023-1.033. http://dx.doi.org/10.1016/S0043-1648(01)00718-9

[21] A. Edrisy,Tribology and Interface Engineering Series 41 (2003) 5.

[22] C. Eutectic, Technical data ARC 530 Wire, 2008, p. 1.

[23] C. Eutectic, Technical data ARC 560 Wire (2007), p. 1.

[24] M. Mellali, J. Therm. Spray Techn. 6 (1997) 217-227. http://dx.doi.org/10.1007/s11666-997-0016-6

[25] Y. Wang Y, C. Li, y A. Ohmori, Thin Solid Films 485 (2005) 141-147. http://dx.doi.org/10.1016/j.tsf.2005.03.024

[26] K. Patel, Surf. Coat. Tech. 204 (2010) 3.567-3.572. http://dx.doi.org/10.1016/j.surfcoat.2010.04.026

[27] M. Bautista, Rev. Instituto Colombiano de Geologia y mineria -INGEOMINAS Bogotá, (2010) 2.

[28] ASTM C 778 - 06 Standard Specification for standard sand ASTM, 2006, p. 4.

[29] L. Dimaté, J. Olaya, E. López Covaleda y J. Morales, Rev. Escuela Colombiana de Ingeniería Colombia 79 (2011) 7-14.

[30] ASTM E407 - 07 Standard practice for microetching Metals and Alloys ASTM, 2007, p. 23.

[31] B. Shaw, A. Leimkuhler y P. Moran, Testing of metallic and inorganic coatings, vol. 947, Eds. B. William, A. George, Pennsylvania, EE.UU., 1987, pp. 246-264.

[32] V. Pokhmurs'kyi y I Dovhunyk, Mater. Sci. 38 (2002) 3.

[33] V. Protsenko, Int. J. Refrac. Met. H. Mater. 31 (2012) 281-283. http://dx.doi.org/10.1016/j.ijrmhm.2011.10.006

[34] T. Murakami, Tribol. Int. 43 (2010) 2.183-2.189.

[35] J. Yang, J. Alloy Compd. 242 (1996) 153-156. http://dx.doi.org/10.1016/0925-8388(96)02320-1

[36] N. Tsyntsaru, Surf. Coat. Tech. 203 (2009) 3.136-3.141. http://dx.doi.org/10.1016/j.surfcoat.2009.03.041

[37] A. Lovas, L. Kiss y F. Sommer, J. Non-Cryst. Solids 192-193 (1995) 608-611. http://dx.doi.org/10.1016/0022-3093(95)00415-7

Downloads

Published

2013-10-30

How to Cite

López-Covaleda, E. A., Mercado-Velandia, J. L., & Olaya-Flórez, J. J. (2013). Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc. Revista De Metalurgia, 49(5), 360–368. https://doi.org/10.3989/revmetalm.1222

Issue

Section

Articles