Pitting corrosion detection in stainless steels using ultrasounds

Authors

  • Cristina Rodríguez Departamento de Tecnología Electrónica de Sistemas y Automática, Universidad de Cantabria
  • María Victoria Biezma Departamento de Ciencia e Ingeniería del Terreno y de los Materiales, Universidad de Cantabria

DOI:

https://doi.org/10.3989/revmetalm.005

Keywords:

Austenitic stainless steel, Nondestructive testing, Pitting corrosion, Ultrasounds

Abstract


Passive metallic systems are able to develop in a spontaneous way a protective layer on the metallic surface that offers excellent corrosion resistance since really in a physical barrier for the reaction with the environment. However, some factors can break locally this layer, promoting one of the most insidious attack, pitting corrosion, which produces local chemical conditions that favouring the corrosive process causing defects in the material, as externals and internals ones, with a random distribution on the metal surface. In this work, ultrasounds non destructive technique has been employed using as variable the maximum amplitude of the backwall echo in order to detect this type of attack. The material employed is an austenitic stainless steel AISI 304, wherein appear several defectology distributions as superficial such as depths simulating pits.

Downloads

Download data is not yet available.

References

Antonya, P.J., Singh Raman, R.K., Raman, R., Kumar, P. 2010. Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity. Corros. Sci. 52 (4), 1404–1412. http://dx.doi.org/10.1016/j.corsci.2009.12.003

ASTM G46 – 94, 2005. Standard Guide for Examination and Evaluation of Pitting Corrosion.

Bethencourt, M., García de Lomas, J., Corzo, A., Villahermosa, D., Matres, V. 2010. Efecto de la biopelícula en la corrosión de aceros inoxidables. Rev. Metal. 46 (1), 37–51. http://dx.doi.org/10.3989/revmetalm.0910

Biezma, M.V., Berlanga, C., Larrea, I. 2011. Estudio fractográfico de los aceros inoxidables dúplex UNS S32205 y UNS S32750 con distintos tratamientos térmicos. An. Mec. Fract. 28, 169–174.

Duret-Thual, C. 2011. Pitting and crevice corrosion – Basic mechanistic aspects for the selection and use of stainless steels. Matériaux & Techniques 99 (81–91), 81–91.

Fajardo, S., Bastidas, D.M., Ryan, M.P., Criado, M., McPhail, D.S., Bastidas, J.M. 2010. Low-Nickel Stainless Steel Passive Film in Simulated Concrete Pore Solution: A SIMS Study. Appl. Surf. Sci. 256 (21), 6139–6143. http://dx.doi.org/10.1016/j.apsusc.2010.03.140

Garin, J.L., Manheim, R.L., Camus, M.A. 2010. Estudio sobre la disolución de fase sigma en un acero dúplex S31803. Rev. Latinoam. Metal. Mater. 30, 46–53.

Gosálbez, J., Salazar, A., Miralles, R., Bosch, I., Vergara, L. 2005. Mejora de la detección y caracterización de materiales con un sistema automático de ultrasonidos. Proc Symposium URSI2005, Gandia, Espa-a, Union Radio-Scientifique Internationale, Ghent, Bélgica, 1–4.

Hamzah, E., Hussain, M.Z., Ibrahim, Z., Abdolahi, A. 2013. Influence of Pseudomonas aeruginosa bacteria on corrosion resistance of 304 stainless steel. Corros. Eng. Sci. Technol. 48 (2), 116–120. http://dx.doi.org/10.1179/1743278212Y.0000000052

Hastuty, S., Nishikata, A., Tsuru, T. 2010. Pitting corrosion of type 430 stainless steel under chloride solution droplet. Corros. Sci. 52 (6), 2035–2043. http://dx.doi.org/10.1016/j.corsci.2010.02.031

Hinds, G., Wickström, L., Mingard, K., Turnbull, A. 2013. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel. Corros. Sci. 71, 43–52. http://dx.doi.org/10.1016/j.corsci.2013.02.002

Kim, S.-T., Jang, S.-H., Lee, In-S., Park, Y.-S. 2011. Effects of solution heat-treatment and nitrogen in shielding gas on the resistance to pitting corrosion of hyper duplex stainless steel welds. Corros. Sci. 53, 1939–1947. http://dx.doi.org/10.1016/j.corsci.2011.02.013

Krautkrämer, J., Krautkrämer, H. 1990. Ultrasonic testing of materials. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-662-10680-8

Linhardt, P. 2010. Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms. Mater. Corros. 61 (12), 1034–1039. http://dx.doi.org/10.1002/maco.201005769

Maier, B., Frankel, G.S. 2010. Pitting corrosion of bare stainless steel 304 under chloride solution droplets. J. Electrochem. Soc. 157 (10), C302–C312. http://dx.doi.org/10.1149/1.3467850

Mirjalili, M., Momeni, M., Ebrahimi, N., Moayed, M.H. 2013. Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions. Mater. Sci. Eng. C 33 (4), 2084–2093. http://dx.doi.org/10.1016/j.msec.2013.01.026 PMid:23498236 Moreno, D.A., García, A.M., Ranninger, C., Molina, B. 2011. Corrosión por picaduras en depósitos de agua de acero inoxidable austenítico en trenes hotel. Rev. Metal. 47 (6), 497–506. http://dx.doi.org/10.3989/revmetalm.1146

Orlikowski, J., Krakowiak, S. 2013. Pitting corrosion and stress-corrosion cracking of buffer tanks in a brewery. Eng. Fail. Anal. 29, 75–82. http://dx.doi.org/10.1016/j.engfailanal.2012.10.013

Pardo, A., Otero, E., Merino, M.C., López, M.D., Utrilla, M.V. 2001. Estudio de la resistencia a la corrosión localizada del acero inoxidable superaustenítico 24,1Cr22Ni7,1Mo en mezclas que contienen iones cloruro y cloruro-fluoruro. Rev. Metal. 37, 499–508. http://dx.doi.org/10.3989/revmetalm.2001.v37.i4.515

Rodríguez, C., Fernández, M., Alonso, L., Pérez-Oria, J.M. 2006. Sistema de detección automatizado de grietas en piezas de fundición mediante ultrasonidos y técnicas clásicas de reconocimiento. Proc XXVII Jornadas de Automática, Almería, Espa-a, CEA, Barcelona, Espa-a, 1–7.

Rodríguez, C. 2012. Sistema automatizado de detección de defectos en piezas metálicas mediante ensayos no destructivos con ultrasonidos. Tesis Doctoral, Escuela Superior de Ingenieros Industriales y de Telecomunicación, Universidad de Cantabria, Espa-a. ISBN: 978-84-616-1307-6.

Rodríguez, C., Biezma, M.V., Fernández, M. 2013. Characterization of sigma in duplex stainless steels using non-destructive techniques by ultrasounds. Mater. Test. 55 (6), 448–454. http://dx.doi.org/10.3139/120.110461

Sambath, S., Nagaraj, P., Selvakumar, N. 2011. Automatic defect classification in ultrasonic NDT using artificial intelligence. J. Nondestruct. Eval. 30 (1), 20–28. http://dx.doi.org/10.1007/s10921-010-0086-0

Sandvik. www.sandvik.com.

Shivaraj, K., Wadhwan, R., Balasubramaniam, K., Krishnamurthy, C.V. 2008. Ultrasonic circumferential guided wave for pitting type corrosion imaging at inaccessible pipe support locations. J. Press. Vessel. Technol. 130 (2), 1–11. http://dx.doi.org/10.1115/1.2892031

Szklarska-Smialowska, Z. 1972. Influence of sulfide inclusions on pitting corrosion of steels. Corrosion 28 (10), 388–396. http://dx.doi.org/10.5006/0010-9312-28.10.388

Tavares, S.S.M., Pardal, J.M., Ponzio, E., Loureiro, A., de Souza, J.A. 2010. Influence of microstructure on the corrosion resistance of hyperduplex stainless steel. Mater. Corros. 61 (4), 313–317.

Published

2014-03-30

How to Cite

Rodríguez, C., & Biezma, M. V. (2014). Pitting corrosion detection in stainless steels using ultrasounds. Revista De Metalurgia, 50(1), e005. https://doi.org/10.3989/revmetalm.005

Issue

Section

Articles