Influence of pre-deformation on the precipitation hardening in Cu-Ni-Si alloy

Authors

  • Eduardo Donoso Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Química, Biotecnología y Materiales https://orcid.org/0000-0001-7849-8556
  • Mª Jesús Diánez Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Química, Biotecnología y Materiales https://orcid.org/0000-0003-0108-7905
  • José M. Criado Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-C.S.I.C.

DOI:

https://doi.org/10.3989/revmetalm.157

Keywords:

Copper alloys, Cu-Ni-Si alloys, Kinetics, Microcalorimetry, Microhardness, Precipitation

Abstract


The effects of pre-deformation on the precipitation processes in a Cu-2.8 Ni-1.4 Si (at.%) alloy were studied using differential scanning calorimetric (DSC), transmission electron microscopy (TEM) and microhardness measurements. The calorimetric curves shows the presence of one exothermic reaction attributed to the formation of δ-Ni2Si precipitates in the copper matrix that was confirmed by TEM. In addition it can be observed that the temperature of the maximum of the DSC peak decreases with the increase of the pre-deformation to the aging treatments. The activation energies calculated for the precipitation of δ-Ni2Si, by the Kissinger method, were similar to those calculated by an Arrhenius function, from the maximum hardening of the matrix due to aging treatments (saturation of the hardness during isothermal aging). The analysis of the microhardness measurements together with the calorimetric curves and the TEM micrographs confirm, on the one hand, that the formation of the δ-Ni2Si phase, during the aging treatments, are responsible for the hardening of the copper matrix, and on the other hand that the deformation prior to the aging treatment partially inhibits the formation of the precipitates.

Downloads

Download data is not yet available.

References

Bahmanpour, H., Kauffmann, A., Khoshkhoo, M.S., Youssef, K.M., Mula, S., Freudenberger, J., Eckert, J., Scattergood, R.O., Koch, C.C. (2011). Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys. Mater. Sci. Eng. A 529, 230-236. https://doi.org/10.1016/j.msea.2011.09.022

Batra, I.S., Laik, A., Kale, G.B., Dey, G.K., Kulkarni, U.D. (2005). Microstructure and propierties of a Cu-Ti-Co alloys. Mater. Sci. Eng. A 402 (1-2), 118-125. https://doi.org/10.1016/j.msea.2005.04.015

Brown, A.M., Asby, M.F. (1980). Correlations for diffusion constants. Acta Metall. 28 (8), 1085-1101. https://doi.org/10.1016/0001-6160(80)90092-9

Caris, J., Varadarajan, R., Stephens, J.J., Lewandowski, J.J. (2008). Microstructural effects on tension and fatigue behavior of Cu-15Ni-8Sn sheet. Mater. Sci. Eng. A 491 (1-2), 137-146. https://doi.org/10.1016/j.msea.2008.01.061

Diánez, M.J., Donoso, E., Sayagués, M.J., Perejón, A., Sánchez-Jiménez, P.E., Pérea-Maqueda, L.A., Criado, J.M. (2016). The calorimetric analysis as a tool for studying the aging hardening mechanism of a Cu-10wt%Ni-5.5wt%Sn alloy. J. Alloys Comp. 688 (Part A), 288-294. https://doi.org/10.1016/j.jallcom.2016.07.021

Donoso, E. (2010). Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys. Rev. Metal. 46 (6), 542-547. https://doi.org/10.3989/revmetalmadrid.1042

Donoso, E., Diánez, M.J., Sayagués, M.J., Criado, J.M., Varschavsky, A., Díaz, G. (2007). Non-isothermal calorimetric study of the precipitation processes in a Cu-10%Ni-3%Al alloy. Rev. Metal. 43 (2), 117-124. https://doi.org/10.3989/revmetalm.2007.v43.i2.58

Donoso, E., Diánez, M.J., Criado, J.M. (2012a). Non-isothermal microcalorimetric evaluations in quenched and in cold-rolled Cu-9Ni-5.5Sn alloys. Rev. Metal. 48 (1), 67-75. https://doi.org/10.3989/revmetalm.1136

Donoso, E., Espinoza, R., Diánez, M.J., Criado, J.M. (2012b). Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at. %) alloy. Mater. Sci. Eng. A 556, 612-616. https://doi.org/10.1016/j.msea.2012.07.035

Donoso, E., Diánez, M.J., Criado, J.M., Espinoza, R., Mosquera, E. (2016). Influence of tin addition on the precipitation processes in a Cu-Ni-Zn alloys. Rev. Metal. 52 (1), e060. https://doi.org/10.3989/revmetalm.060

Donoso, E., Diánez, M.J., Criado, J.M., Espinoza, R., Mosquera, E. (2017). Non-isothermal characterization of the precipitation hardening of a Cu-11Ni-19Zn-1Sn alloy. Metall. Mater. Trans. A 48 (6), 3090-3095. https://doi.org/10.1007/s11661-017-4063-4

El-Danaf, E.A., Al-Mutlaq, A., Soliman, M.S. (2011). Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression. Mater. Sci. Eng. A 528 (25-26), 7579-7588. https://doi.org/10.1016/j.msea.2011.06.075

Lei, Q., Li, Z., Wang, M.P., Zhang, L., Gong, S., Xiao, Z., Pan, Z.Y. (2011). Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy. J. Alloys Compd. 509 (8), 3617-3622. https://doi.org/10.1016/j.jallcom.2010.12.115

Lei, Q., Li, Z., Xiao, T., Pang, Y., Xiang, Z.Q., Qiu, W.T., Xiao, Z. (2013). A new ultrahigh strength Cu-Ni-Si alloy. Intermetallics 42, 77-84. https://doi.org/10.1016/j.intermet.2013.05.013

Mittemeijer, E.J., Cheng, L., Van der Schaaf, P.J., Brakmany, C.M., Korevaar, B.M. (1988). Analysis of nonisothermal transformation kinetics: tempering of iron-carbon and iron-nitrogen martensites. Metall. Trans. A 19 (4), 925-932. https://doi.org/10.1007/BF02628377

Monzen, R., Watanabe, C. (2008). Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A 483-484, 117-119. https://doi.org/10.1016/j.msea.2006.12.163

Pandey, S.C., Joseph, M.A., Pradeep, M.S., Raghavendra, K., Ranganath, V.R., Venkateswarlu, K., Langdon, T.G. (2012). A theoretical and experimental evaluation of repetitive corrugation and straightening: Application to Al-Cu and Al-Cu-Sc alloys. Mater. Sci. Eng. A 534, 282-287. https://doi.org/10.1016/j.msea.2011.11.070

Rohatgi, A., Vecchio, K.S. (2002). The variation of dislocation, density as a function of the stacking fault energy in shock deformed FCC materials. Mater. Sci. Eng. A 328 (1-2), 256-266. https://doi.org/10.1016/S0921-5093(01)01702-6

Ryu, H.J., Baik, H.K., Hong, S.H. (2000). Effect of thermomechanical treatments on miscrostructure and properties of Cu-base leadframe alloy. J. Mater. Sci. 35 (14), 3641-3646. https://doi.org/10.1023/A:1004830000742

San, X.Y., Liang, X.G., Chen, L.P., Xia, Z.L., Zhu, X.K. (2011). Influence of stacking fault energy on the mechanical properties in cold-rolling Cu and Cu-Ge alloys. Mater. Sci. Eng. A 528 (27), 7867-7870. https://doi.org/10.1016/j.msea.2011.07.023

Sierpinski, Z., Gryziecki, J. (1999). Phase transformations and strengthening during ageing of CuNi10Al3 alloy. Mater. Sci. Eng. A 264 (1-2), 279-285. https://doi.org/10.1016/S0921-5093(98)01083-1

Stobrawa, J., Ciura, L.Ciura, Rdzawski, Z. (1996). Rapidly solidified strips of Cu-Cr alloys. Scripta. Mater. 34 (11), 1759-1763. https://doi.org/10.1016/1359-6462(96)00053-X

Stüwe, H.P., Padilha, A.F., Siciliano Jr., F. (2002). Competition between recovery and recrystallization. Mater. Sci. Eng. A 333 (1-2), 361-367. https://doi.org/10.1016/S0921-5093(01)01860-3

Sun, Z., Laitem, C., Vicent, A. (2008). Dynamic embrittlement at intermediate temperature in a Cu-Ni-Si alloy. Mater. Sci. Eng. A 477 (1-2), 145-152.. https://doi.org/10.1016/j.msea.2007.05.013

Tian, L., Anderson, I., Riedemann, T., Russell, A. (2014). Modeling the electrical resistivity of deformation processed metal-metal composites. Acta Mater. 77, 151-161. https://doi.org/10.1016/j.actamat.2014.06.013

Varschavsky, A., Donoso, E. (1988). Order strengthening in ?-Cu-Al alloys as influenced by grain size and solute content. Mater. Sci. Eng. A 101, 231-240. https://doi.org/10.1016/0921-5093(88)90070-6

Varschavsky, A., Donoso, E. (1991). Short-range ordering by excess and thermal vacancies during linear heating experiments in ?-Cu-Al alloys. Mater. Sci. Eng. A 145 (1), 95-107. https://doi.org/10.1016/0921-5093(91)90299-3

Varschavsky, A., Donoso E. (2002). Energetic and kinetic evaluations conducted in a quasi-binary Cu-1 at% Co2Si alloy trough DSC. J. Therm. Anal. Calotim. 68 (1), 231-241. https://doi.org/10.1023/A:1014969618372

Varchavsky, A., Donoso, E. (2003). DSC study of precipitation processes in Cu-Co-Si alloys. J. Therm. Anal. Calotim. 74 (1), 41-56.

Viguier, B. (2003). Dislocation densities and strain hardening rate in some intermetallic compounds. Mater. Sci. Eng. A 349 (1-2), 132-135. https://doi.org/10.1016/S0921-5093(02)00785-2

Watanabe, C., Monzen, R. (2011). Coarsening of ?-Ni2Si precipitates in a Cu-Ni-Si alloy. J. Mater. Sci. 46 (12), 4327-4335. https://doi.org/10.1007/s10853-011-5261-x

Zhao, D., Dong, Q.M., Liu, P., Kang, B.X., Huang, J.L., Jin, Z.H. (2003). Aging behavior of Cu-Ni-Si alloy. Mater. Sci. Eng. A 361 (1-2), 93-99. https://doi.org/10.1016/S0921-5093(03)00496-9

Published

2019-12-30

How to Cite

Donoso, E., Diánez, M. J., & Criado, J. M. (2019). Influence of pre-deformation on the precipitation hardening in Cu-Ni-Si alloy. Revista De Metalurgia, 55(4), e157. https://doi.org/10.3989/revmetalm.157

Issue

Section

Articles