Dynamic Strain Aging (DSA) in solid solubilized Mg-Gd alloys under compression at intermediate temperatures

Authors

DOI:

https://doi.org/10.3989/revmetalm.175

Keywords:

Magnesium alloys, Dynamic strain aging, Serrated flow, Solute segregation

Abstract


The Mg-Gd alloys compressed at intermediate temperatures exhibit flow serrations which present a significant dependence on strain rate and compression temperature. The apparition of this phenomenon is due to the dynamic strain ageing effect, that basically consists in the simultaneous and competitive movement of diffusing solute atoms, mobile dislocations and twin boundaries during deformation. Compression tests have been carried out at temperatures between 25–300 °C and strain rates in a range of 4×10−5 - 8×10−3 s−1 to analyze the apparition of serrations and, implicitly, the DSA effect. A relation between the activation energy for serrated flow and the concentration of gadolinium was determined and indicates that there would be an inversely proportional relation between these two parameters.

Downloads

Download data is not yet available.

References

Ball, E.A., Prangnell, P.B. (1994). Tensile-compressive yield asymmetries in high strength wro.ught magnesium alloys. Scripta Metall. Mater. 31 (2), 111-116. https://doi.org/10.1016/0956-716X(94)90159-7

Cai, X., Fu, H., Guo, J., Peng, Q. (2014). Negative Strain-Rate Sensitivity of Mg Alloys Containing 18R and 14H Long-Period Stacking-Ordered Phases at Intermediate Temperatures. Metall. Mater. Trans. A 45, 3703-3707. https://doi.org/10.1007/s11661-014-2348-4

Chaturvedi, M., Lloyd, D.J., Tangri, K. (1972). Serrated yielding in magnesium-10 wt.-% silver alloy. Met. Sci. J. 6 (1), 16-19.

Chaturvedi, M.C., Lloyd, D.J. (1974). Onset of serrated yielding in Mg-10Ag alloy. The Phil. Mag. A 30, 1199-1207. https://doi.org/10.1080/14786437408207276

Corby, C., Cáceres, C.H., Lukac, P. (2004). Serrated flow in magnesium alloy AZ91. Mat. Sci. Eng. A 387-389, 22-24. https://doi.org/10.1016/j.msea.2004.01.077

Couling, S.L. (1959). Yield points in a dilute magnesium-thorium alloy. Acta Metall. 7 (2), 133-134. https://doi.org/10.1016/0001-6160(59)90121-X

Cottrell, A.H. (1953a). A note on the Portevin-Le Chatelier effect. Phil. Mag. 44 (355), 829-832. https://doi.org/10.1080/14786440808520347

Cottrell, A.H. (1953b). Dislocations and plastic flow in crystals. Clarendon Press, Oxford.

Fang, X.Y., Yi, D.Q., Nie, J.F. (2009). The serrated flow behaviour of Mg-Gd(-Mn-Sc) Alloys. Metall. Mater. Trans. A 40, 2761-2771. https://doi.org/10.1007/s11661-009-9967-1

Gao, L., Chen, R.S., Han, E.H. (2009a). Characterization of dynamic strain ageing in Mg- 3.11wt.% Gd alloy. R.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz (Eds.), Annual conference of TMS, San Francisco, USA, pp. 269-272.

Gao, L., Chen, R.S., Han, E.H. (2009b). Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481 (1-2), 379-384. https://doi.org/10.1016/j.jallcom.2009.02.131

Gao, L., Chen, R.S., Han, E.H. (2009c). Solid solution strengthening behaviors in binary Mg-Y single phase alloys. J. Alloys Compd. 472 (1-2), 234-240. https://doi.org/10.1016/j.jallcom.2008.04.049

Garcés, G., Muñoz-Morris, M.A., Morris, D.G., Perez, P., Adeva, P. (2015). An examination of strain ageing in a Mg-Y-Zn alloy containing Gd. J. Mater. Sci. 50, 5769-5776. https://doi.org/10.1007/s10853-015-9124-8

Garcés, G., Perez, P., Barea, R., Chávez, B.W., Medina, J., Adeva, P. (2018). Microstructural evolution and dynamic strain aging (DSA) of Mg-6%Gd-1%Zn alloy during tension and compression testing at intermediate temperatures. Rev. Metal. 54 (3), e124. https://doi.org/10.3989/revmetalm.124

Gavras, S., Zhu, S.M., Nie, J.F., Gibson, M.A., Easton, M.A. (2016). On the microstructural factors affecting creep resistance of die-cast Mg-La-rare earth (Nd, Y or Gd) alloys. Mat. Sci. Eng. A 675, 65-75. https://doi.org/10.1016/j.msea.2016.08.046

Griffiths, D. (2015). Explaining texture weakening and improved formability in magnesium rare earth alloys. Mater. Sci. Tech. 31 (1), 10-24. https://doi.org/10.1179/1743284714Y.0000000632. https://doi.org/10.1179/1743284714Y.0000000632

Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K.U., Yi, S.B., Letzig, D. (2010). Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater. 63 (7), 725-730. https://doi.org/10.1016/j.scriptamat.2009.12.033

He, S.H., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., Ding, W.J. (2007). Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 427 (1-2), 316-323. https://doi.org/10.1016/j.jallcom.2006.03.015

Jiang, L., Jonas, J.J., Mishra, R. (2011). Effect of dynamic strain aging on the appearance of the rare earth texture 6596-6605. https://doi.org/10.1016/j.msea.2011.05.027

Kubin, L.P, Estrin, Y. (1990). Evolution of Dislocation Densities and the Critical Conditions for the Portevin-Le Châtelier Effect. Acta Metall. Mater. 38 (5), 697-708. https://doi.org/10.1016/0956-7151(90)90021-8

Liu, Y., Chen, X., Wei, K., Xiao, L., Chen, B., Long, H., Yu, Y., Hu, Z., Zhou, H. (2019). Effect of Micro-Steps on Twinning and Interfacial Segregation in Mg-Ag Alloy. Materials 12 (8), 1307. https://doi.org/10.3390/ma12081307 PMid:31013603 PMCid:PMC6515100

Lutterotti, L., Matthies, S., Wenk, H.R. (1997). Combined Texture and Structure Analysis of Deformed Limestone from Time-of-Flight Neutron Diffraction Spectra. J. Appl. Phys. 81 (2), 594-600. https://doi.org/10.1063/1.364220

Lutterotti, L., Bortolotti, M., Ischia, G., Lonardelli, I., Wenk, H.R. (2007). Rietveld Texture Analysis from Diffraction Images. Z. Kristallogr. Suppl. 26, 125-130. https://doi.org/10.1524/zksu.2007.2007.suppl_26.125

Nie, J.F., Zhu, Y.M., Liu, J.Z., Fang, X.Y. (2013). Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340, 957-960. https://doi.org/10.1126/science.1229369 PMid:23704567

Pei, Z., Li, R., Nie, J.F., Morris, J.R. (2019). First-principles study of the solute segregation in twin boundaries in Mg and possible descriptors for mechanical properties. Mater Design 165, 107574. https://doi.org/10.1016/j.matdes.2018.107574

Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82 (7-8), 518-529. https://doi.org/10.1002/mrd.22489 PMid:26153368 PMCid:PMC5428984

Stanford, N., Atwell, D., Beer, A., Davies, C., Barnett, M.R. (2008). Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 59 (7), 772-775. https://doi.org/10.1016/j.scriptamat.2008.06.008

Stanford, N., Sabirov, I., Sha, G., La Fontaine, A., Ringer, S., Barnett, M.R. (2010). Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metall. Mater. Trans. A 41, 734-743. https://doi.org/10.1007/s11661-009-0107-8

Wang, C., Xu, Y., Han, E. (2006). Serrated flow and abnormal strain rate sensitivity of a magnesium-lithium alloy. Mater. Lett. 60 (24), 2941-2944. https://doi.org/10.1016/j.matlet.2006.02.093

Wang, C.Y., Zhang, X.N., Cao, N.Z., Liu, Z. (2007). Serrated Flow in Cast ZE43 Alloy. J. Mater. Sci. 42, 2630-2632. https://doi.org/10.1007/s10853-006-1346-3

Wang, H., Wang, Q.D., Boehlert, C.J., Yin, D.D., Yuan, J. (2015). Tensile and compressive creep behavior of extruded Mg-10Gd-3Y-0.5Zr (wt.%) alloy. Mater. Charact. 99, 25-37. https://doi.org/10.1016/j.matchar.2014.11.006

Wang, W.H., Wu, D., Shah, S.S., Ni, J.H., Chen, R.S., Zhang, X.N. (2017). The relationship between dynamic strain aging and serrate flow behaviour in magnesium alloy. Phil. Mag Lett. 97 (6), 235-240. https://doi.org/10.1080/09500839.2017.1322723

Wu, D., Chen, R.S., Han, E.H. (2012). Serrated flow and tensile properties of a Mg-Gd-Zn alloy. Mat. Sci. Eng. A 532, 267-274. https://doi.org/10.1016/j.msea.2011.10.090

Xu, Y., Li, J., Zhong, Z., Kainer, K., Hort, N. (2017). Effects of Gadolinium and Neodymium Addition on Young's Modulus of Magnesium-Based Binary Alloys. Magnesium Technology 341-347. https://doi.org/10.1007/978-3-319-52392-7_49

Xu, Y., Gensch, F., Ren, Z., Kainer, K.U., Hort, N. (2018). Effects of Gd Solutes on Hardness and Yield Strength of Mg Alloys. Prog. Nat. Sci. 28 (6), 724-730. https://doi.org/10.1016/j.pnsc.2018.10.002

Xu, Y., Huang, Y., Zhong, Z., You, S., Gan, W., Xiao, B., Maawad, E., Schell, N., Gensch, F., Pan, F., Hort, N. (2020). In situ compressive investigations on the effect of solid solution Gd on the texture and lattice strain evolution of Mg. Mat. Sci. Eng. A 774, 138938. https://doi.org/10.1016/j.msea.2020.138938

Yuan, J., Wang, Q., Yin, D., Wang, H., Chen, C., Ye, B. (2013). Creep behavior of Mg-9Gd-1Y-0.5Zr (wt.%) alloy piston by squeeze casting. Mater. Charact. 78, 37-46. https://doi.org/10.1016/j.matchar.2013.01.012

Zhao, X., Chen, H., Wilson, N., Liu, Q., Nie, J.-F. (2019). Direct observation and impact of co-segregated atoms in magnesium having multiple alloying elements. Nat. Commun. 10, 3243. https://doi.org/10.1038/s41467-019-10921-7 PMid:31324757 PMCid:PMC6642188

Zhongjun, W., Weiping, J., Jianzhong, C. (2007). Study on the Deformation Behavior of Mg-3.6% Er Magnesium Alloy. J. Rare Earth 25 (6), 744-748. https://doi.org/10.1016/S1002-0721(08)60019-8

Zhu, S.M., Nie, J.F. (2004). Serrated flow and tensile properties of a Mg-Y-Nd alloy. Scripta Mater. 50 (1), 51-55. https://doi.org/10.1016/j.scriptamat.2003.09.039

Zhu, S.M., Gao, X., Nie, J.F. (2004). Strain burst in creep of Mg-1Ca-0.5Zn-0.6Zr alloy. Mat. Sci. Eng. A 384 (1-2), 270-274. https://doi.org/10.1016/S0921-5093(04)00828-7

Zhu, S.M., Gibson, M.A., Easton, M.A., Nie, J.F. (2010). The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys. Scripta Mater. 63 (7), 698-703. https://doi.org/10.1016/j.scriptamat.2010.02.005

Zhu, Y.M., Bian, M.Z., Nie, J.F. (2017). Tilt boundaries and associated solute segregation in a Mg-Gd alloy. Acta Mater. 127, 505-518. https://doi.org/10.1016/j.actamat.2016.12.032

Zhu, Y.M., Xu, S.W., Nie, J.F. (2018). {101¯1} Twin boundary structure in a Mg-Gd alloy. Acta Mater. 143, 1-12. https://doi.org/10.1016/j.actamat.2017.09.067

Published

2020-09-30

How to Cite

Chávez, B. W., Garcés, G., Pérez, P., Barea, R., & Adeva, P. (2020). Dynamic Strain Aging (DSA) in solid solubilized Mg-Gd alloys under compression at intermediate temperatures. Revista De Metalurgia, 56(3), e175. https://doi.org/10.3989/revmetalm.175

Issue

Section

Articles

Most read articles by the same author(s)