Analysis on surface integrity and sustainability assessment in electrical discharge machining of engineered Al-22%SiC metal matrix composite

Authors

DOI:

https://doi.org/10.3989/revmetalm.210

Keywords:

Al-22%SiC MMC, Cost estimation, EDM, RSM, Surface finish, Sustainability

Abstract


In view of the widespread applications of engineered metal matrix composites, particularly in automobile, electricity, aerospace industries; the achievement of the desired form is a really tough challenge. This research addresses electrical discharge machining (EDM) of engineered Al-22%SiC metal matrix composite (MMC) to analyze the surface roughness of the machined parts. A series of machining trials are performed under varied process conditions (flushing pressure, gap voltage, pulse-on-time, discharge current, pulse-off-time) obtained by Box-Behnken design. Additionally, this work addresses on desirability optimization methodology and predictive modelling for the minimization of machined surface quality employing the response surface methodology (RSM). Based on the motivational viewpoint of “Go green-Think green-Act green”, a unique approach has been suggested for the economic analysis and the sustainability assessment to determine the overall machining cost per part and to justify the usefulness of vegetable oil as dielectric medium in the EDM process. According to this statistical analysis, the contribution of spark discharge current was identified as the leading factor in surface quality degradation. The estimated optimal surface roughness (Ra) value of 0.181 µm and the calculated overall machining cost per part of Rs. 245.9 (2.95 €) were preferred at pulse-on-time of 100 µs, gap voltage of 1 V, pulse-off-time of 30 µs, discharge current of 4 A and flushing pressure of 0.056 MPa, which indicates that it is techno-economically viable. The vegetable oil considered as dielectric fluid is biodegradable, environmentally safe and, thus, contributes to having a sustainable production. The Al-SiC MMC machining data would be beneficial to the industry.

Downloads

Download data is not yet available.

References

Belloufi, A., Mezoudj, M., Abdelkrim, M., Rezgui, I., Chiba, E. (2020). Experimental and predictive study by multi-output fuzzy model of electrical discharge machining performances. Int. J. Adv. Manuf. Technol. 109, 2065-2093. https://doi.org/10.1007/s00170-020-05718-8

Bharathi Raja, S., Srinivas Pramod, C.V., Vamshee Krishna, K., Ragunathan, A., Vinesh, S. (2013). Optimization of electrical discharge machining parameters on hardened die steel using Firefly Algorithm. Eng. Comput. 31(1), 1-9. https://doi.org/10.1007/s00366-013-0320-3

Bharti, P.S., Maheshwari, S., Sharma, C. (2012). Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J. Mech. Sci. Technol. 26 (6), 1875-1883. https://doi.org/10.1007/s12206-012-0411-x

Cakir, M.V., Eyercioglu, O., Gov, K., Sahin, M., Cakir, S.H. (2013). Comparison of Soft Computing Techniques for Modelling of the EDM Performance Parameters. Adv. Mech. Eng. 5, 392531. https://doi.org/10.1155/2013/392531

Chattopadhyay, K.D., Verma, S., Satsangi, P.S., Sharma, P.C. (2009). Development of empirical model for different process parameters during rotary electrical discharge machining of copper-steel (EN-8) system. J. Mater. Process. Technol. 209 (3), 1454-1465. https://doi.org/10.1016/j.jmatprotec.2008.03.068

Chaudhury, P., Samantaray, S. (2021). Modelling and Optimization of Machining of SiC-CNT Conductive Ceramic Composite used for Micro and Nano Sensor by Electrical Discharge Machining. J. Inst. Eng. India Ser. D. https://doi.org/10.1007/s40033-021-00256-3

Dash, L., Padhan, S., Das, S.R. (2020). Experimental investigations on surface integrity and chip morphology in hard tuning of AISI D3 steel under sustainable nanofluid-based minimum quantity lubrication. J. Braz. Soc. Mech. Sci. Eng. 42 (10), 500 https://doi.org/10.1007/s40430-020-02594-x

D'Urso, G., Giardini, C., Ravasio, C. (2018). Effects of Electrode and Workpiece Materials on the Sustainability of Micro-EDM Drilling Process. Int. J. Precis. Eng. Manuf. 19 (11), 1727-1734. https://doi.org/10.1007/s12541-018-0200-2

Ekmekci, B. (2007). Residual stresses and white layer in electric discharge machining (EDM). Appl. Surf. Sci. 253 (23), 9234-9240. https://doi.org/10.1016/j.apsusc.2007.05.078

Gao, Q., Zhang, Qh., Su, S., Zhang, J. (2008). Parameter optimization model in electrical discharge machining process. J. Zhejiang Univ. Sci. A 9 (1), 104-108. https://doi.org/10.1631/jzus.A071242

Garcia Rojas, E.E.G., Coimbra, J.S.R., Telis-Romero, J. (2013). Thermophysical Properties of Cotton, Canola, Sunflower and Soybean Oils as a Function of Temperature. Int. J. Food Prop. 16 (7), 1620-1629. https://doi.org/10.1080/10942912.2011.604889

Gohil, V., Puri, Y. M. (2016). Statistical analysis of material removal rate and surface roughness in electrical discharge turning of titanium alloy (Ti-6Al-4V). Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232 (9), 1603-1614. https://doi.org/10.1177/0954405416673104

Gopalakannan, S., Senthilvelan, T. (2013). A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227 (7), 993-1004. https://doi.org/10.1177/0954405413479505

Hanif, M., Wasim, A., Shah, A.H., Noor, S., Sajid, M., Mujtaba, N. (2019). Optimization of process parameters using graphene-based dielectric in electric discharge machining of AISI D2 steel. Int. J. Adv. Manuf. Technol. 103, 3735-3749. https://doi.org/10.1007/s00170-019-03688-0

Jagadish, Kumar, S. Soni, D.L. (2021). Performance Analysis and Optimization of Different Electrode Materials and Dielectric Fluids on Machining of High Carbon High Chromium Steel. In Electrical Discharge Machining. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. https://doi.org/10.1007/s40010-020-00727-4

Keskin, Y., Halkacı, H.S., Kizil, M. (2005). An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM). Int. J. Adv. Manuf. Technol. 28 (11-12), 1118-1121. https://doi.org/10.1007/s00170-004-2478-8

Kumar, S., Batish, A., Singh, R., Singh, T.P. (2014). A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J. Mech. Sci.Technol. 28 (7), 2831-2844. https://doi.org/10.1007/s12206-014-0637-x

Kumar, S., Dhingra, A.K., Kumar, S. (2017). Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface methodology. Mech. Adv. Mater. Mod. Process. 3 (1), 7. https://doi.org/10.1186/s40759-017-0022-4

Kumar, A., Grover, N., Manna, A., Chohan J.S., Kumar, R., Singh, S., Prakash, C., Pruncu, C.I. (2020). Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. 29, 1-14. https://doi.org/10.1177/2633366X20963137

Majumder, A. (2014). Comparative study of three evolutionary algorithms coupled with neural network model for optimization of electric discharge machining process parameters. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229 (9), 1504-1516. https://doi.org/10.1177/0954405414538960

Marichamy, S., Saravanan, M., Ravichandran, M., Veerappan, G. (2016). Parametric optimization of electrical discharge machining process on α-β brass using grey relational analysis. J. Mater. Res. 31 (16), 2531-2537. https://doi.org/10.1557/jmr.2016.213

Markopoulos, A.P., Manolakos, D.E., Vaxevanidis, N.M. (2008). Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J. Intell. Manuf. 19 (3), 283-292. https://doi.org/10.1007/s10845-008-0081-9

Mohan, B., Rajadurai, A., Satyanarayana, K.G. (2004). Electric discharge machining of Al-SiC metal matrix composites using rotary tube electrode. J. Mater. Process. Technol. 153-154, 978-985. https://doi.org/10.1016/j.jmatprotec.2004.04.347

Mohanty, C.P., Mahapatra, S.S., Singh, M.R. (2014). A particle swarm approach for multi-objective optimization of electrical discharge machining process. J. Intell. Manuf. 27 (6), 1171-1190. https://doi.org/10.1007/s10845-014-0942-3

Mohanty, C.P., Mahapatra, S.S., Singh, M.R. (2017). An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm. Eng. Sci. Technol. Int. J. 20 (2), 552-562. https://doi.org/10.1016/j.jestch.2016.07.003

Muthuramalingam, T., Mohan, B. (2013). Influence of Discharge Current Pulse on Machinability in Electrical Discharge Machining. Mater. Manuf. Process. 28 (4), 375-380. https://doi.org/10.1080/10426914.2012.746700

Naik, S., Das, S.R., Dhupal, D. (2020). Experimental Investigation, Predictive Modeling, Parametric Optimization and Cost Analysis in Electrical Discharge Machining of Al-SiC Metal Matrix Composite. Silicon 13, 1017-1040. https://doi.org/10.1007/s12633-020-00482-6

Pellegrini, G; Ravasio, C. (2019). Evaluation of the sustainability of the micro-electrical discharge milling process. APEM 14 (3), 343-354. https://doi.org/10.14743/apem2019.3.332

Prabhu, S., Uma, M., Vinayagam, B.K. (2013). Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling. J. Braz. Soc. Mech. Sci. Eng. 36 (3), 637-652. https://doi.org/10.1007/s40430-013-0112-0

Pradhan, M.K., Das, R., Biswas, C.K. (2009). Comparisons of neural network models onsurface roughness in electrical discharge machining. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 223 (7), 801-808. https://doi.org/10.1243/09544054JEM1367

Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S. (2016). Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30 (9), 4195-4204. https://doi.org/10.1007/s12206-016-0831-0

Puertas, I., Perez, C.J.L. (2003). Modelling the manufacturing parameters in electrical discharge machining of siliconized silicon carbide. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 217 (6), 791-803. https://doi.org/10.1243/09544050360673170

Rahul, Datta, S., Biswal, B.B., Mahapatra, S.S. (2017). A Novel Satisfaction Function and Distance-Based Approach for Machining Performance Optimization During Electro-Discharge Machining on Super Alloy Inconel 718. Arab. J. Sci. Eng. 42 (5), 1999-2020. https://doi.org/10.1007/s13369-017-2422-5

Rahul, Datta, S., Biswal, B.B., Mahapatra, S.S. (2019). Machinability Analysis of Inconel 601, 625, 718 and 825 during Electro-Discharge Machining: On Evaluation of Optimal Parameters Setting. Measurement 137, 382-400. https://doi.org/10.1016/j.measurement.2019.01.065

Ramesh, S., Jenarthanan, M.P. (2021). Optimizing the powder mixed EDM process of nickel based super alloy. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 235 (4), 1092-1103. https://doi.org/10.1177/09544089211002782

Raza, M.H., Wasim, A., Ali, M.A., Hussain, S., Jahanzaib, M. (2018). Investigating the effects of different electrodes on Al6061-SiC-7.5 wt% during electric discharge machining. Int. J. Adv. Manuf. Technol. 99 (9-12), 3017-3034. https://doi.org/10.1007/s00170-018-2694-2

Reddy, V.V., Valli, P.M., Kumar, A., Reddy, C.S. (2014). Multi-objective optimization of electrical discharge machining of PH17-4 stainless steel with surfactant-mixed and graphite powder-mixed dielectric using Taguchi-data envelopment analysis-based ranking method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229 (3), 487-494. https://doi.org/10.1177/0954405414530904

Sahu, S.K., Jadam, T., Datta, S., Nandi, G. (2018). Effect of using SiC powder-added dielectric media during electro-discharge machining of Inconel 718 superalloys. J. Braz. Soc. Mech. Sci. Eng. 40 (7), 330. https://doi.org/10.1007/s40430-018-1257-7

Sahu, S.K., Datta, S. (2019). Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys: Comparison with conventional electro-discharge machining. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 233 (2), 384-402. https://doi.org/10.1177/0954408918787104

Sahu, A.K., Thomas, J., Mahapatra, S.S. (2020). An intelligent approach to optimize the electrical discharge machining of titanium alloy by simple optimization algorithm. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 235 (2), 371-383. https://doi.org/10.1177/0954408920964685

Selvarajan, L., Manohar, M., Udhaya kumar, A., Dhinakaran, P. (2017). Modelling and experimental investigation of process parameters in EDM of Si3N4-TiN composites using GRA-RSM. J. Mech. Sci. Technol. 31 (1), 111-122. https://doi.org/10.1007/s12206-016-1009-5

Senthil Kumar, R., Suresh, P. (2019). Experimental study on electrical discharge machining of Inconel using RSM and NSGA optimization technique. J. Braz. Soc. Mech. Sci. Eng. 41, 35. https://doi.org/10.1007/s40430-018-1526-5

Shabgard, M.R., Farahmand, M R., Ivanov, A. (2009). Mathematical modelling and comparative study of the machining characteristics in ultrasonic-assisted electrical discharge machining of cemented tungsten carbide (WC-10%Co). Proc. Inst. Mech. Eng. B J. Eng. Manuf. 223 (9), 1115-1126. https://doi.org/10.1243/09544054JEM1461

Singh, S. (2012). Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3p/20P composites by grey relational analysis. Int J. Adv. Manuf. Technol. 63 (9-12), 1191-1202. https://doi.org/10.1007/s00170-012-3984-8

Singh, B., Kumar, J., Kumar, S. (2015). Optimization and surface modification in electrical discharge machining of AA 6061/SiCp composite using Cu-W electrode. Proc. Inst. Mech. Eng. Pt. L J. 231 (3), 332-348. https://doi.org/10.1177/1464420715596544

Singh, J., Sharma, R.K. (2017). Multi-objective optimization of green powder-mixed electrical discharge machining of tungsten carbide alloy. Proc. Inst. Mech. Eng. Part C 232 (16), 2774-2786. https://doi.org/10.1177/0954406217727306

Singh, N.K., Kumar, S., Singh, Y., Sharma, V. (2019). Predictive analysis of surface finish in gas assisted electrical discharge machining using statistical and soft computing techniques. Surf. Rev. Lett. 27 (4), 1950126. https://doi.org/10.1142/S0218625X19501269

Sivam, S.P., Michaelraj, A.L., Kumar, S.S., Prabhakaran, G., Dinakaran, D., Ilankumaran, V. (2013). Statistical multi-objective optimization of electrical discharge machining parameters in machining titanium grade 5 alloy using graphite electrode. Proc. Inst. Mech. Eng. Part B 228 (7), 736-743. https://doi.org/10.1177/0954405413511073

Talla, G., Sahoo, D.K., Gangopadhyay, S., Biswas, C.K. (2015). Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. Int. J. Eng. Sci. Technol. 18 (3), 369-373. https://doi.org/10.1016/j.jestch.2015.01.007

Tang, L., Guo, Y.F. (2013). Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. Int. J. Adv. Manuf. Technol. 70 (5-8), 1369-1376. https://doi.org/10.1007/s00170-013-5380-4

Tang, L., Du, Y.T. (2014). Experimental study on green electrical discharge machining in tap water of Ti-6Al-4V and parameters optimization. Int. J. Adv. Manuf. Technol. 70 (1-4), 469-475. https://doi.org/10.1007/s00170-013-5274-5

Tzeng, C.-J., Chen, R.-Y. (2013). Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach. Int. J. Precis. Eng. Manuf. 14 (5), 709-717. https://doi.org/10.1007/s12541-013-0095-x

Uyyala, S.B., Kumar, A., Krishna, A.G. (2014). Performance analysis of electrical discharge machining parameters on RENE 80 nickel super alloy using statistical tools. I.J.M.M.M. 15 (3/4), 212-234. https://doi.org/10.1504/IJMMM.2014.060551

Yadav, U.S., Yadava, V. (2014). Experimental modeling and multiobjective optimization of electrical discharge drilling of aerospace superalloy material. Proc. Inst. Mech. Eng. Part B 229 (10), 1764-1780. https://doi.org/10.1177/0954405414539299

Yildiz, Y., Sundaram, M.M., Rajurkar, K.P. (2012). Statistical analysis and optimization study on the machinability of beryllium-copper alloy in electro discharge machining. Proc. Inst. Mech. Eng. Part B 226 (11), 1847-1861. https://doi.org/10.1177/0954405412457610

Published

2021-12-30

How to Cite

Naik, S., Ranjan Das, S., Dhupal, D., & Kumar Khatua, A. (2021). Analysis on surface integrity and sustainability assessment in electrical discharge machining of engineered Al-22%SiC metal matrix composite. Revista De Metalurgia, 57(4), e210. https://doi.org/10.3989/revmetalm.210

Issue

Section

Articles