Investigation on dry sliding wear behavior of AA5083/nano-Al2O3 metal matrix composites
DOI:
https://doi.org/10.3989/revmetalm.213Keywords:
ANOVA, Metal matrix composites, Nano-Al2O3, Sliding wear, TaguchiAbstract
The tribological behavior of aluminum alloy (AA5083)/nano-Al2O3 metal matrix composites with varying reinforcement percentage of 2, 4, 6 and 8 wt.-% nano-Al2O3 particles was studied. The Al/nano-Al2O3 composites were prepared using a stir casting route. The scanning electron microscopy (SEM) images of prepared specimens suggested nearly uniform dispersion of nanoparticles in the Al matrix. Sliding wear behavior was studied using a pin-on-disc test rig. The plan of experiments was in accordance with Taguchi’s L25 orthogonal array using three process parameters at five levels viz. reinforcement weight percentage, applied load and sliding distance. The obtained results reveal that nano-particles reinforced composites exhibited better wear resistance. While the main effects plot suggested that wear increases with an increase in the load, the sliding distance and decreases with an increase in the reinforcement percentage. The analysis of variance (ANOVA) illustrated that the sliding distance was the most significant contributing parameter. The worn surface morphology of the specimen tested under the highest load condition revealed the occurrence of abrasive wear phenomenon.
Downloads
References
Archard, J.F. (1953). Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 24, 981-988. https://doi.org/10.1063/1.1721448
ASTM G99 (2017). Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International, West Conshohocken, PA, USA.
ASTM E10 (2018). Standard Test Method for Brinell Hardness of Metallic Materials. ASTM International, West Conshohocken, PA, USA.
Azimi, A., Shokuhfar, A., Nejadseyfi, O., Fallahdoost, H., Salehi, S. (2015). Optimizing consolidation behavior of Al 7068-TiC nanocomposites using Taguchi statistical analysis. Trans. Nonferrous Met. Soc. China 25 (8), 2499-2508. https://doi.org/10.1016/S1003-6326(15)63868-7
Basavarajappa, S., Chandramohan, G., Paulo Davim, J. (2007). Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites. Mater. Design 28 (4), 1393-1398. https://doi.org/10.1016/j.matdes.2006.01.006
Casati, R., Vedani, M. (2014). Metal matrix composites reinforced by Nano-Particles-A review. Metals 4 (1), 65-83. https://doi.org/10.3390/met4010065
Cavdar, U., Gezici, L.U., Gul, B., Avyaz, M., (2020). Microstructural properties and tribological behaviours of Ultra-High frequency induction rapid sintered Al-WC composites. Rev. Metal. 56 (1), e163.
Çömez, N. (2021) Wear behavior and corrosion properties of Age-hardened AA2010 aluminum alloy. Rev. Metal. 57 (3), e201. https://doi.org/10.3989/revmetalm.201
Ekka, K.K., Chauhan, S.R., Varun (2014). Dry Sliding Wear Characteristics of SiC and Al2O3 Nanoparticulate Aluminium Matrix Composite Using Taguchi Technique. Arab. J. Sci. Eng. 40 (2), 571-581. https://doi.org/10.1007/s13369-014-1528-2
Ekka, K.K., Chauhan, S.R., Varun (2015). Dry Sliding Wear Characteristics of SiC and Al2O3 Nanoparticulate Aluminium Matrix Composite Using Taguchi Technique. Arab. J. Sci. Eng. 40, 571-581. https://doi.org/10.1007/s13369-014-1528-2
El-Kady, E.-S., Khalil, T., Tawfeek, T. (2015). Experimental Investigations towards Optimization of the Parameters for Wear Loss Quantities in A356/Al2O3 Nanocomposites. Am. J. Mater. Eng. Technol. 3 (1), 1-6.
Essa, F.A., Elsheikh, A.H., Yu, J., Elkady, O.A., Saleh, B. (2021). Studies on the effect of applied load, sliding speed and temperature on the wear behavior of M50 steel reinforced with Al2O3 and / or graphene nanoparticles. J. Mater. Res. Technol. 12, 283-303. https://doi.org/10.1016/j.jmrt.2021.02.082
Ezatpour, H.R., Sajjadi, S.A., Sabzevar, M.H., Huang, Y. (2014). Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater. Design 55, 921-928. https://doi.org/10.1016/j.matdes.2013.10.060
Ezatpour, H.R., Torabi Parizi, M., Sajjadi, S.A., Ebrahimi, G.R., Chaichi, A. (2016). Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles. Mater. Chem. Phys. 178, 119-127. https://doi.org/10.1016/j.matchemphys.2016.04.078
Gargatte, S., Upadhye, R.R., Dandagi, V.S., Desai, S.R., Waghamode, B.S. (2013). Preparation & Characterization of Al-5083 Alloy Composites. JMMCE 1 (1), 8-14. https://doi.org/10.4236/jmmce.2013.11002
Idrisi, A.H., Mourad, A.H.I., Thekkuden, D.T., Christy, J.V. (2018). Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis. IOP Conf. Ser.: Mater. Sci. Eng. 324, 012087. https://doi.org/10.1088/1757-899X/324/1/012087
Jenczyk, P., Grzywacz, H., Milczarek, M., Jarzabek, D.M. (2021) Mechanical and Tribological Properties of Co-Electrodeposited Particulate-Reinforced Metal Matrix Composites: A Critical Review with Interfacial Aspects. Materials 14 (12), 3181. https://doi.org/10.3390/ma14123181 PMid:34207739 PMCid:PMC8229049
Jeyasimman, D., Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Kambali, R.S. (2014). An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Mater. Design 57, 394-404. https://doi.org/10.1016/j.matdes.2013.12.067
Joshua, K.J., Vijay, S.J., Selvaraj, D.P. (2018). Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites. Ceram. Int. 44 (17), 20774-20781. https://doi.org/10.1016/j.ceramint.2018.08.077
Kim, K.T., Cha, S. Il, Hong, S.H. (2007). Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A 449-451, 46-50. https://doi.org/10.1016/j.msea.2006.02.310
Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J. Mater. Process. Technol. 161 (3), 381-387. https://doi.org/10.1016/j.jmatprotec.2004.07.068
Kumar, H., Chaudhari, G.P. (2014). Creep behavior of AS41 alloy matrix nano-composites. Mater. Sci. Eng. A 607, 435-444. https://doi.org/10.1016/j.msea.2014.04.020
Kumar, C.A.V., Rajadurai, J.S. (2016). Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy. Trans. Nonferrous Met. Soc. China 26 (1), 63-73. https://doi.org/10.1016/S1003-6326(16)64089-X
Kumar, R.A., Devaraju, A., Arunkumar, S. (2018). Experimental Investigation on Mechanical Behaviour and Wear Parameters of TiC and Graphite Reinforced Aluminium Hybrid Composites. Mater. Today-Proc. 5 (6), 14244-14251. https://doi.org/10.1016/j.matpr.2018.03.005
Ma, P., Jia, Y., Gokuldoss, P. konda, Yu, Z., Yang, S., Zhao, J., Li, C. (2017). Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites. Metals 7 (9), 359. https://doi.org/10.3390/met7090359
Mobasherpour, I., Tofigh, A.A., Ebrahimi, M. (2013). Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying. Mater. Chem. Phys. 138 (2-3), 535-541. https://doi.org/10.1016/j.matchemphys.2012.12.015
Mousavian, R.T., Behnamfard, S., Heidarzadeh, A., Taherkhani, K., Khosroshahi, R.A., Brabazon, D. (2021) Incorporation of SiC Ceramic Nanoparticles into the Aluminum Matrix by a Novel Method: Production of a Metal Matrix Composite. Met. Mater. Int. 27, 2968-2976. https://doi.org/10.1007/s12540-019-00604-9
Moustafa, E., Khalil, A., Haitham, A., Hefni, M., Mosleh, A.O. (2021). Microstructure, Hardness, and Wear Behavior Investigation of the Surface Nanocomposite Metal Matrix Reinforced by Silicon Carbide and Alumina Nanoparticles. J. Miner. Metal Mater. Eng. 7, 57-62.
Narasimha Murthy, I., Venkata Rao, D., Babu Rao, J. (2012). Microstructure and mechanical properties of aluminum-fly ash nano composites made by ultrasonic method. Mater. Design 35, 55-65. https://doi.org/10.1016/j.matdes.2011.10.019
Padhi, P., Kar, S. (2011). A novel route for development of bulk Al/SiC metal matrix nanocomposites. J. Nanotechnol. ID 413512. https://doi.org/10.1155/2011/413512
Pang, X., Xian, Y., Wang, W., Zhang, P. (2018). Tensile properties and strengthening effects of 6061Al/12wt.%B4C composites reinforced with nano-Al2O3 particles. J. Alloys Compd. 768, 476-484. https://doi.org/10.1016/j.jallcom.2018.07.072
Raturi, A., Mer, K.K.S., Kumar Pant, P. (2017). Synthesis and characterization of mechanical, tribological and micro structural behaviour of Al 7075 matrix reinforced with nano Al2O3 particles. Mater. Today-Proc. 4 (2), 2645-2658. https://doi.org/10.1016/j.matpr.2017.02.139
Ray, V.K., Padhi, P., Jha, B.B., Sahoo, T.K. (2015). Wear characteristics of pure aluminium, al-alloy & al-alumina metal mtrix nano composite in dry condition: Part-I. IJRET 4 (7), 17-25. https://doi.org/10.15623/ijret.2015.0407004
Shivakumar, N., Vasu, V., Narasaiah, N., Kumar, S. (2015). Synthesis and Characterization of Nano-sized Al2O3 Particle Reinforced ZA-27 Metal Matrix Composites. Procedia Materials Science 10, 159-167. https://doi.org/10.1016/j.mspro.2015.06.037
Siddesh Kumar, N.G., Ram Prabhu, T., Shiva Shankar, G.S., Basavarajappa, S. (2016). Dry sliding wear properties of unhybrid and hybrid Al alloy based nanocomposites. Tribol. - Mater. Surf. Interfaces 10 (3), 138-149. https://doi.org/10.1080/17515831.2016.1247132
Singh, R.K., Kumar, D., Kumar, A. (2015). Wear Behavior of Al-SiC-Cu Metal Matrix Composites Prepared by Stir Casting and Optimization by using Taguchi Method. J. Material Sci. Eng. 4 (5), 1-4. https://doi.org/10.4172/2169-0022.1000185
Somani N., Gupta N.K., (2021). Effect of TiC nanoparticles on microstructural and tribological properties of Cu-TiC nano-composites. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 236 (4), 319-336. https://doi.org/10.1177/09544054211029828
Srivyas, P.D., Charoo, M.S. (2018). Role of Fabrication Route on the Mechanical and Tribological Behavior of Aluminum Metal Matrix Composites - A Review. Mater. Today-Proc. 5 (9), 20054-20069. https://doi.org/10.1016/j.matpr.2018.06.372
Tu, J.P., Rong, W., Guo, S.Y., Yang, Y.Z. (2003). Dry sliding wear behavior of in situ Cu-TiB2 nanocomposites against medium carbon steel. Wear 255 (7-12), 832-835. https://doi.org/10.1016/S0043-1648(03)00115-7
Yao, Y.T., Jiang, L., Fu, G.F., Chen, L.Q. (2015). Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique. Trans. Nonferrous Met. Soci. China 25 (8), 2543-2548. https://doi.org/10.1016/S1003-6326(15)63873-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.