High temperature corrosion resistant coatings for gas turbine components

Authors

  • A. Agüero Instituto Nacional de Técnica Aeroespacial, Área de Materiales Metálicos. Madrid

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i5.82

Keywords:

Oxidation, Corrosion, Coating, Power generation, Aeronautic, Turbine

Abstract


Hot section gas turbine components are made of superalloys, developed to withstand high temperatures in conditions in which mechanical stresses are high and that require high surface stability. However, during the 50s it became evident that compositions resulting in high mechanical strength for these materials were not compatible with those offering optimal protection from the working environments. The idea of employing protective coatings over materials with high mechanical strength resulted therefore from this situation. Presently, both aeronautic and power generation turbines operate at temperatures within the 900-1400 °C, thanks to these coatings, indispensable for their correct operation. In this work, the principal degradation mechanisms in these operating conditions and the different type of coatings presently employed by the industrial sector are described, beginning by the oldest Ni or Co aluminides, following with the addition of other metals such as Pt, Cr, etc. to the former coatings in order to increase their useful life, continuing with the overlay MCrAlY coatings and finishing with the thermal barrier coating systems. Moreover, the corresponding deposition techniques industrially employed to deposit these coatings are described, and finally, an insight of the latest research lines currently being developed is also included.

Downloads

Download data is not yet available.

References

[1] J. Stringer, Surf. Coat. Technol. 108-109 (1998) 1-9. doi:10.1016/S0257-8972(98)00642-2

[2] G.W. Goward, Surf. Coat. Technol. 108-109, (1998) 73-79. doi:10.1016/S0257-8972(98)00667-7

[3] J.L. Smialek y G.H. Meier, Superalloys II, C.T. Sims, N.S. Stoloff y W.C. Hadel (Eds.), John Wiley Sons, 1967, pp. 293-326.

[4] A.S. Khanna, High Temperature. Oxidation and Corrosion., Ed. ASM International, Ohio, USA, 2002, pp. 109-134.

[5] F.S. Pettit y C.S. Giggins, Superalloys II, C.T. Sims, N.S. Stoloff y W.C. Hadel (Eds.), John Wiley Sons, 1967, pp. 327-358.

[6] A.S. Khanna, High Temperature Oxidation. And Corrosion, Ed. ASM International, Ohio, USA, 2002, pp. 172-201.

[7] J.L. Smialek, C.E. Lowell, J. Electrochem. Soc. 121 (1974) 800. doi:10.1149/1.2401922

[8] C. Coddet, Mater. Sci. Forum, 461-464 (2004) 193-464.

[9] J. Stinger E I.G.Wright, Mater. Sci. Forum 369-372 (2001) 1-22.

[10] G.W. Goward y D.H Boone, Oxid. Met. 3 (1973) 475-495. doi:10.1007/BF00604047

[11] P.S: Liu, K.M. Liang, H.Y. Zhou, S.R. Gu, X.F. Sun, H.R. Guan, T. Jin, y K.N. YANG, Surf. Coat. Technol. 175 (2001) 75-79.

[12] G.W. Goward, D.H Boone y C.S. Giggins, Trans. Am. Soc. Met. 60 (1967) 228-241.

[13] C. Houngninou, S. Chevalier y J.P. Larpin, Mater. Sci. Forum 461-464 (2004) 273-280.

[14] J.W. Lee y y.C. Kuo, Surf. Coat. Technol. 201 (2006) 3.867-3.871.

[15] A.B. Smith, A. Kempster y J. Smith, Surf. Coat. Technol. 120-121 (1999) 112-117. doi:10.1016/S0257-8972(99)00346-1

[16] K. L. Choy, Prog. Mater. Sci. 48 (2003) 57-170. doi:10.1016/S0079-6425(01)00009-3

[17] T.A: Kircher, B.G. Mcmordie y A. Mccarter, Surf. Coat. Technol. 68-69 (1994) 32-37. doi:10.1016/0257-8972(94)90134-1

[18] R. Streiff, J.M. N’gandu Muamba y D.H. Boone, Thin Solid Films 73 (1980) 43-52. doi:10.1016/0040-6090(80)90327-2

[19] K. Godlewski y E. Godlewska, Mater. Sci. Eng. 8 (1987) 103-109. doi:10.1016/0025-5416(87)90073-5

[20] R. Bianco, R. Rapp y J.L. Smialek, J. Electrochem. Soc. 140 (1993) 1.191-1.203.

[21] B.M. Warnes, Surf. Coat. Technol. 146-147 (2001) 7-12. doi:10.1016/S0257-8972(01)01363-9

[22] N. Czech, W. Schmitz y W. Stamm, Surf. Coat. Technol. 76-77 (1995) 28-36.

[23] D.K. Gupta y D.S. Duval, US Patent No. 4,585,481 (1986).

[24] H.J. Rätzer-Scheibe, K. Fritscher y W Wirth, High Temperature Alloys for Gas Turbines and Other Applications,W. Bets et al. (eds.), D. Reibel Publishing Co. Dordrecht, 1986, pp. 1.205-1.214.

[25] K. Fritscher, C. Leyens y U. Schulz, Mater. Sci. Forum 369-372 (2001) 703-710.

[26] M. Shibata, S. Kuroda, M. Watanabe y y. Sakamoto, Mater. Sci. Forum 522-523 (2006) 339-344.

[27] B. Wielage, A Wank, H. Phockurska, T. Grund, C. Rupprecht, G. Reisel y E. Friesen, Surf. Coat. Technol. 201 (2006) 2.032- 2.037.

[28] S.J. Grisaffe, NASA TMX-3410 (1976).

[29 ] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier y F.S. Pettit, Prog. Mater. Sci. 46 (2001) 505-553. doi:10.1016/S0079-6425(00)00020-7

[30] A.C. Fox y T.W. Clyne, Surf. Coat. Technol. 184 (2004) 311-321. doi:10.1016/j.surfcoat.2003.10.018

[31] D. Stöver y C. Funke. J. Process. Tech. 92-92 (1999) 195-202.

[32] D. J. Wortman, B.A. Nagaraj y E.C. Duderstadt, Sci. Eng. A A121 (1989) 433-440. doi:10.1016/0921-5093(89)90798-3

[33] J. Toscano, R. Va‚En, A. Gil, M. Subanovic, D. Naumenko, L. Singheiser y W.J. Quadakkers, Surf. Coat. Technol. 201 (2006) 3.906-3.910.

[34] A. Rabiei y A.G. Evans, Acta Materialia 48 (2000) 3.963-3.976.

[35] V.K. Topylgo, D.R. Clarke y K.S. Murphy, Surf. Coat. Technol. 146-147 (2001) 124-131. doi:10.1016/S0257-8972(01)01482-7

[36] C. Coddet, Surf. Coat. Technol. 201 (2006) 1.969-1.974.

[37] K. Landes, Surf. Coat. Technol. 201 (2006) 1.948-1.954.

[38] B. Gleeson, H. Wang, S. Hayashi y D. Sordelet, Mater. Sci. Forum 461-464 (2004) 213.

[39] B.A. Pint, K.L. More y I.G. Wright, High Temp. 20 (2003) 275-386.

[40] G, Sheffknecht, Q. Chen y G. Weissinger, Proc. 6th Int. Charles Parson Turbine Conf. E. Strand et al (Eds.), Londres, 2003, pp. 113-128.

[41] V. Deodeshmukh, N. Mu, B. Li y B. Gleeson, Surf. Coat. Technol. 201 (2006) 3.836-3.840.

[42] T.J. Nijdam, G.H. Marijnissen, E. Vergeldt, A.B. Kloosterman yw.G. Sloof, Oxid. Met. 66 (2006) 269-293. doi:10.1007/s11085-006-9036-8

[43] V.K. Tolpygo, D.R. Clarke, Surf. Coat. Technol. 200 (2005) 1.276–1.281.

[44] D. Monceau, F. Crabos, A. Malié, y B. Pieraggi, Mater. Sci. Forum 369-372 (2001) 607-614.

[45] U. Kaden, C. Leyens, M. Peters y W.A. Kaysser, Elevated Temperature Coatings: Science and Technology, J.M. Hampikian y N.B. Dahotre (Eds.), TMS Warrandale, PA (1999) p. 27.

[46] T. Narita, T. Izumi, T. Nishimoto, y. Shibata, K. Zaini Thisin y S. Hayashi, Mater. Sci. Forum 522-523 (2006) 1-14.

[47] J. A. Haynes, y. Zhang, K.M. Cooley, L. Walker, K.S. Reeves y B.A. Pint, Surf. Coat. Technol. 188-189 (2004) 153-157. doi:10.1016/j.surfcoat.2004.08.066

[48] J.R. Nicholls, K.J. Lawson, A. Johnston y D.S. Rickerby, Mater. Sci. Forum 369-372 (2001) 595-606.

[49] S. Sambasivan y K. Steiner, Patente US6680126-B1 (2004).

[50] J. Glenn, NASA Tech. Briefs, 2005.

[51] K. Bobzin, Erick Lugscheider, N. Bagcivan, High Temp. Mater. Proc. 10 (2006) 103-116. doi:10.1615/HighTempMatProc.v10.i1.80

[52] R. Vassen, M. Dietrich H. Lehmann, X. Cao, G. Pracht, F. Tietz, D. Pitzer y D. Stover, Materliawiss. Werkst. 32 (2001) 673-677.

[53] M.M. Gentleman y D.R. Clarke, Surf. Coat. Technol. 200 (2005) 1.264-1.269.

[54] B.A. Pint, J.A. Haynes, y. Zhang, K.L. More E I.G. Wright, Surf. Coat. Technol. 201 (2006) 3.852-3.856.

Downloads

Published

2007-10-30

How to Cite

Agüero, A. (2007). High temperature corrosion resistant coatings for gas turbine components. Revista De Metalurgia, 43(5), 384–398. https://doi.org/10.3989/revmetalm.2007.v43.i5.82

Issue

Section

Articles