Hydrogen damage of a welded API 5L X52 steel


  • R. Réquiz Departamento de Ciencia de los Materiales, Universidad Simón Bolívar
  • S. Camero Universidad Central de Venezuela, Facultad de Ingeniería, Escuela de Metalurgia y Ciencia de los Materiales
  • V. Aristizabal Departamento de Ciencia de los Materiales, Universidad Simón Bolívar
  • A. Rivas Departamento de Ciencia de los Materiales, Universidad Simón Bolívar




API 5L X52 steel, electrical resistance welding, Hydrogen damage, Hydrogen permeation, Blistering


The main objective of the present investigation was to study the susceptibility to hydrogen damage on a type API 5L X52 steel welded by electrical resistance. Several techniques, such as hydrogen permeation and cathodic charging were used. The metallic material was characterized using SEM and TEM. The base metal microstructure was very similar to that one corresponding to the welded area. This microstructure was mainly comprised by ferrite and perlite, differing only in the grain size. Therefore, the susceptibility to hydrogen damage was similar in both cases. It is worth mentioning that the welded area has very small dimensions. Indeed, the fusion zone is only 5 mm wide while the heat affected zone is 1 mm wide. The hydrogen damage observed was mainly in the form of blisters, which were associated to the presence of aluminum rich inclusions. Also, it was noticed partial inclusion dissolution and some matrix attack adjacent to the inclusions.


Download data is not yet available.


[1] H. Duarte, D. See, B. Popov Y R. White, J. Electrochem. Soc. 144 (1997) 2.313-2.317.

[2] H. Baethmann, M. Graef, B. Hoh Y R. Poepperling, Corrosion 203 (1984) 202-230.

[3] L. Coudreuse Y J. Charles, Corros. Sci. 27 (1987) 1.169-1.181.

[4] R. Réquiz, N. Vera, Y S. Camero, Rev. Metal. Madrid 40 (2004) 30-38.

[5] J. A. Carreño, I. Uribe Y J.C. Carrillo, Rev. Metal. Madrid Vol. Ext. (2003) 182-187.

[6] E. Giraldo Y C. Chaves, Departamento de Ingeniería mecánica, Facultad de Minas, Universidad Nacional de Colombia, Medellín, 2002 pp. 59-64.

[7] M.F. De Romero, Z. Duque, O. T. De Rincón, O. Pérez E I. Araujo, Rev. Metal. Madrid Vol. Ext. (2003) 213-218.

[8] Y. Yoshino, Corrosion 39 (1983) 435-443.

[9] J. C. Charbonnier, H. Margot-Marette, F. Moussy, D. Bridoux Y C. Perdrix, Corrosion 293 (1987) 1-15.

[10] M. F. J. Galis Y G. C. Guntz, Corrosion 195 (1988) 1-17.

[11] D. Rydre Y T. Grundy, The American Society for Metals (1982) 272-274.

[12] T. Kaneko, Y. Okada Y A. Ikeda, Corrosion 292 (1987) 1-9.

[13] M. I. Luppo Y J. Ovejero-García, Corros. Sci. 32-10 (1991) 1.125-1.136.

[14] W. C. Luu Y J. K. Wu, Corros. Sci. 38-2 (1996) 239-245.

[15] G. P. Echaniz, T. E. Pérez, C. Pampillo, R. C. Newman, R. P. M. Procter Y G.W. Lorimer, Corrosion 50 (1997) 1-19.

[16] F. Iacoviello, J. Galland Y M. Habashi, Corros. Sci. 40-8 (1998) 1.281-1.293.

[17] B. G. Pound, Electrochemical techniques to study Hydrogen Ingress in Metals, Eds. O’M Bockris et al., Plenum Press, New York, 1993, pp. 63-133.

[18] Turnbull, M. Saenz De Santa María Y N. D. Thomas, Corros. Sci. 29 (1989) 89-104. doi:10.1016/0010-938X(89)90082-6

[19] J. Vera, R. Case Y A. Castro, Corrosion 97(1997) paper 47. (ASTM G148-97): Standard practice for evaluation of hydrogen uptake, permeation and transport in materials by an electrochemical technique (1997)1-9.

[20] J. Flis, T. Zzkroczymski, V. Kleshnyal, T. Kobiela Y R. Dus, Electrochim. Acta 44 (1999) 3.989-3.997.

[21] M. Louthan, The effect of hydrogen on metals. Process Industries Corrosion, NACE, USA, 1975 pp. 126-133.

[22] S. Camero, A. L. Rivas, R. Réquiz Y H. D’armas, Proc.16th Int. Corrosion Cong. Beijing, China, 2005, pp. 10-17.

[23] M. Stratmann, Encycl.Electrochem. Corros. Oxide Flms, 4 (2003) 108-145.

[24] G. Ananta, Mater Sci. 26 (2003) 435-439.

[25] A. Ikeda Y M. Kowaya, H2S Corrosion in oil and gas production: a compilation of classic papers. NACE (1987) 205-212.

[26]C. Turn, Jr., B. E. Wilde Y C. A. Troianos, Corrosion 39 (1983) 384-370.

[27] M. Garet, A. Brass Y F. Gutierres, Corros. Sci. 40 (1998) 1.073-1.086.

[28] Ikeda, Y. Morita, F. Terasaki Y M. Takeyama, 2nd. Int. Cong. Hydrogen in Metals, Paris, 1977, pp. 4-7.

[29] M. Iino. Metall. Trans. 9A (1978) 1.581-1.590.

[30] I. Maroef, D. L. Olson, M. Eberhart Y G. R. Edwards, Int. Mater. Rev. 47 (2002) 191-223. doi:10.1179/095066002225006548

[31] B. E. Wilde, C. D. Kim and E. H. Phelps, Corrosion 36 (1980) 625-632.




How to Cite

Réquiz, R., Camero, S., Aristizabal, V., & Rivas, A. (2008). Hydrogen damage of a welded API 5L X52 steel. Revista De Metalurgia, 44(2), 101–112. https://doi.org/10.3989/revmetalm.2008.v44.i2.99