Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution

Authors

  • Laura A. Hernández-Alvarado Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí
  • Martha A. Lomelí Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí
  • Luis S. Hernández Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí
  • Juana M. Miranda Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí
  • Lilia Narváez Facultad del Hábitat, Universidad Autónoma de San Luis Potosí
  • Iván Díaz Centro Nacional de Investigaciones Metalúrgicas (CENIM), CSIC
  • María Cristina García-Alonso Centro Nacional de Investigaciones Metalúrgicas (CENIM), CSIC
  • María Lorenza Escudero Centro Nacional de Investigaciones Metalúrgicas (CENIM), CSIC

DOI:

https://doi.org/10.3989/revmetalm.012

Keywords:

AZ31, Biomaterials, Chemical conversion coating, Corrosion, Magnesium, Phytic acid

Abstract


In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank’s solution at 37 °C. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied.

Downloads

Download data is not yet available.

References

Álvarez-López, M., Pereda, M.D., del Valle, J.A., Fernández-Lorenzo, M., García-Alonso, M.C., Ruano, O.A., Escudero, M.L. (2010). Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 6 (5), 1763–1771. http://dx.doi.org/10.1016/j.actbio.2009.04.041 PMid:19446048

Brar, H.S., Keselowsky, B.G., Sarntinoranont, M., Manuel, M.V. (2011). Design considerations for developing biodegradable and bioresorbable magnesium implantes. JOM 63 (4), 100–104. http://dx.doi.org/10.1007/s11837-011-0048-8

Carboneras, M., Hern.ndez-Alvarado, L.A., Mireles, I.E., Hernández, L.S., García-Alonso, M.C., Escudero, M.L. (2010). Tratamientos químicos de conversión para la protección de magnesio biodegradable en aplicaciones temporales de reparación ósea. Rev. Metal. 46 (1), 86–92. http://dx.doi.org/10.3989/revmetalm.0944

Carboneras, M., Iglesias, C., Pérez-Maceda, B.T., del Valle, J.A., García-Alonso, M.C., Alobera, M.A., Clemente, C., Rubio, J.C., Escudero, M.L., Lozano, R.M. (2011). Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente. Rev. Metal. 47 (3), 212–223. http://dx.doi.org/10.3989/revmetalm.1065

Chen, X.B., Birbilis, N., Abbott, T.B. (2011). Review of corrosionresistant conversion coatings for magnesium and its alloys. Corrosion 67 (3), 035005-1-035005-16. http://dx.doi.org/10.5006/1.3563639

Chen, Y., Wan, G., Wang, J., Zhao, S., Zhao, Y., Huang, N. (2013). Covalent immobilization of phytic acid on Mg by alkaline pre-treatment: Corrosion and degradation behavior in phosphate buffered saline. Corros. Sci. 75, 280–286. http://dx.doi.org/10.1016/j.corsci.2013.06.011

Cui, X., Li, Q., Li, Y., Wang, F., Jin, G., Ding, M. (2008). Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy. Appl. Surf. Sci. 255 (5) Part 1, 2098–2103. http://dx.doi.org/10.1016/j.apsusc.2008.06.199

Cui, X., Jin, G., Li, Q., Yang, Y., Li, Y., Wang, F. (2010). Electroless Ni-P plating with a phytic acid pretreatment on AZ91D magnesium alloy. Mat. Chem. Phys. 121 (1–2), 308–313. http://dx.doi.org/10.1016/j.matchemphys.2010.01.042

Dost, K., Tokul, O. (2006). Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal. Chim. Acta 558 (1–2), 22–27. http://dx.doi.org/10.1016/j.aca.2005.11.035

El-Sayed, A-R., Harm, U., Mangold, K-M., Fürbeth, W. (2012). Protection of galvanized steel from corrosion in NaCl solution by coverage with phytic acid SAM modified with some cations and thiols. Corros. Sci. 55, 339–350. http://dx.doi.org/10.1016/j.corsci.2011.10.036

Gao, L., Zhang, C., Zhang, M., Huang, X., Jiang, X. (2009). Phytic acid conversion coating on Mg-Li alloy. J. Alloys compd. 485 (1–2), 789–793. http://dx.doi.org/10.1016/j.jallcom.2009.06.089

González, J.A. (1989). Control de la corrosión. Estudio y medida por técnicas electroquímicas. CSIC, Madrid (Espa-a).

Guo, K.W. (2011). A review of magnesium/magnesium alloys corrosion. Recent Pat. Corros. Sci. 1, 72–90. http://dx.doi.org/10.2174/2210683911101010072

Gupta, R.K., Mensah-Darkwa, K., Kumar, D. (2013). Effect of post heat treatment on corrosion resistance of phytic acid conversion coated magnesium. J. Mater. Sci. Technol. 29 (2), 180–186. http://dx.doi.org/10.1016/j.jmst.2012.12.014

Hernández L.A., Hernández, L.S., Hernández, G., Escudero, M.L. (2010). Art.culo 079. Comunicación presentada en el XXV Congreso Nacional de la Sociedad Mexicana de Electroquímica, Zacatecas, México.

Hillis, J.E. (1994). Surface Engineering of magnesium alloys en ASM Handbook, Surface engineering, Vol 5, ASM international, pp. 819–834.

Jianrui, L., Yina, G., Weidong, H. (2006). Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys. Surf. Coat. Technol. 201, 1536–1541. http://dx.doi.org/10.1016/j.surfcoat.2006.02.020

Kirkland, N.T., Lespagnol, J., Birbilis, N., Staiger, M.P. (2010). A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 52, 287–291. http://dx.doi.org/10.1016/j.corsci.2009.09.033

Kirkland, N.T., Birbilis, N., Staiger, M.P. (2012). Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 8 (3), 925–936. http://dx.doi.org/10.1016/j.actbio.2011.11.014 PMid:22134164

Maga, J.A. (1982). Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Fodd Chem. 30 (1), 1–9. http://dx.doi.org/10.1021/jf00109a001

Notoya, T., Otieno-Alego, V., Schweinsbert, D.P. (1995). The corrosion and polarization behaviour of copper in domestic water in the presence of Ca, Mg, and Na-salts of phytic acid. Corros. Sci. 37 (1), 55–65. http://dx.doi.org/10.1016/0010-938X(94)00105-F

Pan, F., Yang, X., Zhang, D. (2009). Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy. Appl. Surf. Sci. 255, 8363–8371. http://dx.doi.org/10.1016/j.apsusc.2009.05.089

Vormann, J. (2003). Magnesium: nutrition and metabolism. Mol. Aspects Med. 24 (1–3), 27–37. http://dx.doi.org/10.1016/S0098-2997(02)00089-4

Witte, F. (2010). The history of biodegradable magnesium implants: A review. Acta Biomater. 6 (5), 1680–1692. http://dx.doi.org/10.1016/j.actbio.2010.02.028 PMid:20172057

Ye, C.H., Zheng, Y.F., Wang, S.Q., Xi, T.F., Li, Y.D. (2012). In vitro corrosi.n and biocompatibility sudy of phytic acid modified WE43 magnesium alloy. Appl. Surf. Sci. 258 (8), 3420–3427. http://dx.doi.org/10.1016/j.apsusc.2011.11.087

Zhang, R.F., Xiong, G.Y., Hua, C.Y. (2010). Comparison of coating properties obtained by MAO on magnesium alloys in silicate and phytic acid electrolytes. Curr. Appl. Phys. 10 (1), 255–259. http://dx.doi.org/10.1016/j.cap.2009.06.008

Zheng, Y., Gu, X. (2011). Research activities of biomedical magnesium alloys in China. JOM 63 (4), 105–108. http://dx.doi.org/10.1007/s11837-011-0049-7

Published

2014-06-30

How to Cite

Hernández-Alvarado, L. A., Lomelí, M. A., Hernández, L. S., Miranda, J. M., Narváez, L., Díaz, I., García-Alonso, M. C., & Lorenza Escudero, M. (2014). Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution. Revista De Metalurgia, 50(2), e012. https://doi.org/10.3989/revmetalm.012

Issue

Section

Articles

Most read articles by the same author(s)