Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution
DOI:
https://doi.org/10.3989/revmetalm.012Keywords:
AZ31, Biomaterials, Chemical conversion coating, Corrosion, Magnesium, Phytic acidAbstract
In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank’s solution at 37 °C. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied.
Downloads
References
Álvarez-López, M., Pereda, M.D., del Valle, J.A., Fernández-Lorenzo, M., García-Alonso, M.C., Ruano, O.A., Escudero, M.L. (2010). Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 6 (5), 1763–1771. http://dx.doi.org/10.1016/j.actbio.2009.04.041 PMid:19446048
Brar, H.S., Keselowsky, B.G., Sarntinoranont, M., Manuel, M.V. (2011). Design considerations for developing biodegradable and bioresorbable magnesium implantes. JOM 63 (4), 100–104. http://dx.doi.org/10.1007/s11837-011-0048-8
Carboneras, M., Hern.ndez-Alvarado, L.A., Mireles, I.E., Hernández, L.S., García-Alonso, M.C., Escudero, M.L. (2010). Tratamientos químicos de conversión para la protección de magnesio biodegradable en aplicaciones temporales de reparación ósea. Rev. Metal. 46 (1), 86–92. http://dx.doi.org/10.3989/revmetalm.0944
Carboneras, M., Iglesias, C., Pérez-Maceda, B.T., del Valle, J.A., García-Alonso, M.C., Alobera, M.A., Clemente, C., Rubio, J.C., Escudero, M.L., Lozano, R.M. (2011). Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente. Rev. Metal. 47 (3), 212–223. http://dx.doi.org/10.3989/revmetalm.1065
Chen, X.B., Birbilis, N., Abbott, T.B. (2011). Review of corrosionresistant conversion coatings for magnesium and its alloys. Corrosion 67 (3), 035005-1-035005-16. http://dx.doi.org/10.5006/1.3563639
Chen, Y., Wan, G., Wang, J., Zhao, S., Zhao, Y., Huang, N. (2013). Covalent immobilization of phytic acid on Mg by alkaline pre-treatment: Corrosion and degradation behavior in phosphate buffered saline. Corros. Sci. 75, 280–286. http://dx.doi.org/10.1016/j.corsci.2013.06.011
Cui, X., Li, Q., Li, Y., Wang, F., Jin, G., Ding, M. (2008). Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy. Appl. Surf. Sci. 255 (5) Part 1, 2098–2103. http://dx.doi.org/10.1016/j.apsusc.2008.06.199
Cui, X., Jin, G., Li, Q., Yang, Y., Li, Y., Wang, F. (2010). Electroless Ni-P plating with a phytic acid pretreatment on AZ91D magnesium alloy. Mat. Chem. Phys. 121 (1–2), 308–313. http://dx.doi.org/10.1016/j.matchemphys.2010.01.042
Dost, K., Tokul, O. (2006). Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal. Chim. Acta 558 (1–2), 22–27. http://dx.doi.org/10.1016/j.aca.2005.11.035
El-Sayed, A-R., Harm, U., Mangold, K-M., Fürbeth, W. (2012). Protection of galvanized steel from corrosion in NaCl solution by coverage with phytic acid SAM modified with some cations and thiols. Corros. Sci. 55, 339–350. http://dx.doi.org/10.1016/j.corsci.2011.10.036
Gao, L., Zhang, C., Zhang, M., Huang, X., Jiang, X. (2009). Phytic acid conversion coating on Mg-Li alloy. J. Alloys compd. 485 (1–2), 789–793. http://dx.doi.org/10.1016/j.jallcom.2009.06.089
González, J.A. (1989). Control de la corrosión. Estudio y medida por técnicas electroquímicas. CSIC, Madrid (Espa-a).
Guo, K.W. (2011). A review of magnesium/magnesium alloys corrosion. Recent Pat. Corros. Sci. 1, 72–90. http://dx.doi.org/10.2174/2210683911101010072
Gupta, R.K., Mensah-Darkwa, K., Kumar, D. (2013). Effect of post heat treatment on corrosion resistance of phytic acid conversion coated magnesium. J. Mater. Sci. Technol. 29 (2), 180–186. http://dx.doi.org/10.1016/j.jmst.2012.12.014
Hernández L.A., Hernández, L.S., Hernández, G., Escudero, M.L. (2010). Art.culo 079. Comunicación presentada en el XXV Congreso Nacional de la Sociedad Mexicana de Electroquímica, Zacatecas, México.
Hillis, J.E. (1994). Surface Engineering of magnesium alloys en ASM Handbook, Surface engineering, Vol 5, ASM international, pp. 819–834.
Jianrui, L., Yina, G., Weidong, H. (2006). Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys. Surf. Coat. Technol. 201, 1536–1541. http://dx.doi.org/10.1016/j.surfcoat.2006.02.020
Kirkland, N.T., Lespagnol, J., Birbilis, N., Staiger, M.P. (2010). A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 52, 287–291. http://dx.doi.org/10.1016/j.corsci.2009.09.033
Kirkland, N.T., Birbilis, N., Staiger, M.P. (2012). Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 8 (3), 925–936. http://dx.doi.org/10.1016/j.actbio.2011.11.014 PMid:22134164
Maga, J.A. (1982). Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Fodd Chem. 30 (1), 1–9. http://dx.doi.org/10.1021/jf00109a001
Notoya, T., Otieno-Alego, V., Schweinsbert, D.P. (1995). The corrosion and polarization behaviour of copper in domestic water in the presence of Ca, Mg, and Na-salts of phytic acid. Corros. Sci. 37 (1), 55–65. http://dx.doi.org/10.1016/0010-938X(94)00105-F
Pan, F., Yang, X., Zhang, D. (2009). Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy. Appl. Surf. Sci. 255, 8363–8371. http://dx.doi.org/10.1016/j.apsusc.2009.05.089
Vormann, J. (2003). Magnesium: nutrition and metabolism. Mol. Aspects Med. 24 (1–3), 27–37. http://dx.doi.org/10.1016/S0098-2997(02)00089-4
Witte, F. (2010). The history of biodegradable magnesium implants: A review. Acta Biomater. 6 (5), 1680–1692. http://dx.doi.org/10.1016/j.actbio.2010.02.028 PMid:20172057
Ye, C.H., Zheng, Y.F., Wang, S.Q., Xi, T.F., Li, Y.D. (2012). In vitro corrosi.n and biocompatibility sudy of phytic acid modified WE43 magnesium alloy. Appl. Surf. Sci. 258 (8), 3420–3427. http://dx.doi.org/10.1016/j.apsusc.2011.11.087
Zhang, R.F., Xiong, G.Y., Hua, C.Y. (2010). Comparison of coating properties obtained by MAO on magnesium alloys in silicate and phytic acid electrolytes. Curr. Appl. Phys. 10 (1), 255–259. http://dx.doi.org/10.1016/j.cap.2009.06.008
Zheng, Y., Gu, X. (2011). Research activities of biomedical magnesium alloys in China. JOM 63 (4), 105–108. http://dx.doi.org/10.1007/s11837-011-0049-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.