Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation

Authors

  • V. Rajkovic Materials Science Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade
  • D. Božic Materials Science Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade
  • A. Devečerski Materials Science Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade
  • S. Bojanic E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid
  • M. T. Jovanovic Materials Science Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade

DOI:

https://doi.org/10.3989/revmetalmadrid.1024

Keywords:

Powder processing, Metal matrix composites, Microstructural characterization, Microhardness, High-temperature properties

Abstract


The objective of the work is to study the effects of the high-energy milling on strengthening, thermal stability and electrical conductivity of Cu-Al2O3 composite. The prealloyed copper powders, atomized in inert gas and containing 3 wt. % Al, were milled up to 20 h in the planetary ball mill to oxidize in situ aluminium with oxygen from the air. Composite compacts were obtained by hot-pressing in an argon atmosphere at 800 °C for 3 h under the pressure of 35MPa. The microstructural characterization was performed by the optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analysis (XRD). The microhardness, electrical conductivity and density measurements were also carried out. The effect of internal oxidation and high-energy milling on strengthening of Cu-Al2O3 composite was significant, The increase of the microhardness of composite compacts (292 HV) is almost threefold comparing to compacts processed from the as-received Cu-3 wt. % Al powder (102 HV). The grain size of Cu-Al2O3 compacts processed from 5 and 20 h-milled powders was 75 and 45 nm, respectively. The small increase in the grain size and the small microhardness drop indicate the high thermal stability of Cu-Al2O3 composite during high-temperature exposure at 800 °C.

Downloads

Download data is not yet available.

References

[1] V.M. Rajkovic andM.V.Mitkov, Int. J. Powder Metall. 36 (2000) 45-49.

[2] V. Rajkovic, D. Bozic and M. T. Jovanovic, J.Mater. Process. Technol. 200 (2008) 106-114. doi:10.1016/j.jmatprotec.2007.08.019

[3] M.X. Guo, M.P. Wang, L.F. Cao and R.S. Lei, Mater. Charact. 58 (2007) 928-935. doi:10.1016/j.matchar.2006.09.005

[4] C. Jianyi, W. Mingpu, L. Zhou, W. Janhui., China-EU Forum on Nanosized Technology, Beijin, P.R. China, 2002. Dec, p. 93, http://www.863.org.cn/english/Forum/17.doc.

[5] L. Guobin, S. Jibing, G. Quanmei andW. Ru, J.Mater. Process. Technol. 170 (2005) 336-340. doi:10.1016/j.jmatprotec.2005.05.011

[6] B. Tian, P. Liu, K. Song, Y. Li, Y. Liu, F. Ren and J. Su, Mater Sci Eng A, 435-436 (2006) 705-710. doi:10.1016/j.msea.2006.07.129

[7] Z. Hussain and L. C. Kit,Mater. Des. 29 (2008) 1311-1315. doi:10.1016/j.matdes.2007.07.003

[8] M.L.Mehta, T.K.A. Ghudbban,M.S.B. Eltalhi and N.E.A. ElrabIy, PowderMet. Inter. 22(1990) 15-18.

[9] A.Mukhtar, D L Zhang, C Kong and P.Munroe, 2009 IOP Conf. Series: Mater. Sci. Eng. 4 (2009) 012005.

[10] H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures Ed., J.Wiley, New York, USA, 1959, pp. 440-448.

[11] B.Lonnberg, J.Mat. Sci, 29 (1994) 3224-3230. doi:10.1007/BF00356667

[12] K.G.Williamson and H.W. HallWH, ActaMet. 1 (1953) 22-31.

[13] G. Ziegler, PowderMet. Inter. 10 (1978) 70-73.

[14] D. Maurice and T.H. Courtney, Metall. Mater. Trans. A, 26 (1995) 2.437-2.444.

[15] J.S. Benjamin,Met. Trans. 1 (1970) 2943-2951.

[16] A. Nadkarani, ASMHandbook (vol. 7).Metals Park, OH, ASMInternational, 1990. 869-873.

[17] O.Preston and N.J. Grant, Trans. Metall. Soc. AIME 221 (1961) 164-173.

[18] N.J. Grant, A. Lee and M. Lou, Proc. of Conf. High Conductivity Copper and Aluminium Alloys, Warrendale, PA USA, The Metallurgical Society of AIME, 1984, pp. 103-111.

[19] E. Botcharova, J. Freudenberg and L. Schultz, Acta Mater. 54 (2006) 3333-3341. doi:10.1016/j.actamat.2006.03.021

Downloads

Published

2010-12-30

How to Cite

Rajkovic, V., Božic, D., Devečerski, A., Bojanic, S., & Jovanovic, M. T. (2010). Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation. Revista De Metalurgia, 46(6), 520–529. https://doi.org/10.3989/revmetalmadrid.1024

Issue

Section

Articles